

WEB	API	DEVELOPMENT	WITH	PYTHON
A	Beginner’s	Guide	using	Flask	and	FastAPI

(First	Edition)
By

REHAN	HAIDER
	
	

Website:	https://CloudBytes.dev
Email:	student@CloudBytes.dev

https://CloudBytes.dev
mailto:student@CloudBytes.dev

Copyright	Notice
Copyright	©	2021	by	Rehan	Haider	and	CloudBytes.	All	rights
reserved.
No	part	of	this	publication	may	be	reproduced,	stored,	or	transmitted	in	any
form	or	by	any	means,	electronic,	mechanical,	photocopying,	recording,
scanning,	or	otherwise	without	written	permission	from	the	publisher.	It	is	illegal
to	copy	this	book,	post	it	to	a	website,	or	distribute	it	by	any	other	means	without
permission.

Rehan	Haider	asserts	the	moral	right	to	be	identified	as	the	author	of	this	work.

Rehan	Haider	or	CloudBytes	has	no	responsibility	for	the	persistence	or
accuracy	of	URLs	for	external	or	third-party	Internet	Websites	referred	to	in	this
publication	and	does	not	guarantee	that	any	content	on	such	Websites	is,	or	will
remain,	accurate	or	appropriate.

Designations	used	by	companies	to	distinguish	their	products	are	often	claimed
as	trademarks.	All	brand	names	and	product	names	used	in	this	book	and	on	its
cover	are	trade	names,	service	marks,	trademarks,	and	registered	trademarks	of
their	respective	owners.

Preface
This	book	is	intended	for	beginners	with	basic	programming	knowledge,	who
are	trying	to	understand	advanced	concepts	and	give	them	a	hands-on	experience
of	interacting	with,	and	building	an	API	using	Python.

My	method	of	learning	is	by	doing	and	doing	something	over	and	over	again	till
it	becomes	a	habit.	Thus,	this	book	will	follow	that	philosophy,	talk	about
concepts	that	you	need	to	know,	but	will	be	focused	on	providing	hands-on
examples	that	you	follow	along	but	not	act	as	a	complete	reference.

The	contents	of	this	book	are	divided	into	three	parts
1.	 Introductory	Concepts	:	That	explains	terms	and	definitions	that	you	will	encounter
2.	 Interacting	with	an	API	:	Explains	how	to	use	and	interact	with	APIs.	It’s	easier	to	build	things	that

you	one	knows	how	to	operate
3.	 Building	APIs	:	Main	focus	of	the	book,	building	APIs	using	Python’s	Flask	&	FastAPI	libraries

The	topics	and	presentation	will	get	progressively	more	difficult	as	you	go
deeper	into	the	book	and	that	is	by	design	to	get	the	readers	to	a	stage	where	they
are	able	self-learn	any	framework	or	library	without	requiring	any	help.

Student	Support
If	you	face	any	challenges	or	need	help,	you	can	email	student@CloudBytes.dev

You	can	also	create	an	issue	on	the	GitHub	repository	of	that	particular	exercise.
In	fact,	this	is	a	good	practice.

Additional	Resources
Modern	developers	have	only	two	loyal	friends:

1.	 Google
2.	 Stack	Overflow

Chances	are	your	program	will	throw	errors	and	you	need	to	debug	it.	The	best
way	to	do	that	is	start	by	Googling	your	error	message	and	look	through	the
links	that	Google	suggests	on	Stack	Overflow.	Arguably	over	half	of	issues	can
be	resolved	this	way.	The	rest	requires	looking	through	documentation,	reading
blog	/	tutorial	posts,	and	talking	to	other	developers.

	

	

mailto:student@CloudBytes.dev
https://google.com
https://stackoverflow.com/

Table	of	Contents
Table	of	Contents
Prerequisites
1.	Internet
2.	Accounts
3.	Operating	System
4.	Python
5.	Terminal
6.	Text	Editor	/	IDE
7.	Git	for	Version	Control
8.	Docker	for	Desktop	(Optional)
9.	Jupyter	Notebook

Chapter	1:	Introduction	to	Web	APIs
1.1	What	is	API?
1.2	Types	of	APIs
1.3	What	is	a	Web	API?
1.4	Getting	our	hands	dirty
1.5	Getting	hands	dirty	programmatically
1.6	JavaScript	Object	Notation	(JSON)
1.7	Why	are	APIs	needed?
1.8	API	Design	Patterns

Chapter	2:	Python	&	Working	with	APIs
2.1	Programmatically	accessing	an	API

Chapter	3:	Building	APIs	with	Flask
3.1	Initialise	the	development	environment
3.2	Understanding	the	Starter	Kit
3.3	Initialising	the	starter	kit
3.3	A	minimal	Flask	API
3.3	Explanation
3.5	Running	the	API
3.6	Call	the	API	Programmatically
3.7	JSONIFY	the	response

Chapter	4:	Building	interactive	APIs
4.1	Capturing	request	arguments
4.2	Explanation

4.3	Testing	the	API
4.4	Catching	sneaky	behaviour	and	errors
4.4	Handling	incorrect	API	requests

Chapter	5:	Multi-argument	interactive	API
5.1	Capturing	multiple	arguments
5.2	Explanation
5.3	Testing	the	API
5.4	Reader	Challenge

Chapter	6.	Google	search	as	an	API
6.1	An	informal	introduction	to	URL	and	Querystring
6.2	What	can	we	do	with	this	information?
6.3	Understanding	the	Starter	Kit
6.4	Logic	of	the	application
6.5	Rendering	home	page
6.6	Returning	Search	Results
6.7	Explanation
6.8	Student	Challenge

Chapter	7:	Building	a	Dictionary	API
7.1	Understanding	the	Starter	Kit
7.2	Logic	of	the	application
7.3	Handle	incoming	searches
7.4	Finding	the	definition	of	the	word
7.5	Handling	list	of	words
7.6	Testing	the	API
7.7	Student	Challenge
7.8	Jupyter	Notebook	to	test	the	API

Chapter	8:	Building	a	POST	API
8.1	API	to	add	Filters
8.2	Understanding	the	Starter	Kit
8.3	Logic	of	the	application
8.4	Implementing	the	Filter
8.5	Testing	the	API
8.6	Getting	filtered	image
8.7	Bonus	Challenge	#2

Chapter	9:	Bonus	Lesson:	Deploying	the	API
9.1	Configuring	the	CD	Pipeline
9.2	Testing	the	API
9.3	Pro	Tip:	Testing	using	Terminal

9.4	Bonus	Challenge

Chapter	10:	Introducing	FastAPI
10.1	Asynchronous	Programming
10.2	Enter	FastAPI
10.3	Understanding	the	Starter	Kit
10.4	Saying	Hello	FastAPI

Chapter	11:	Dictionary	using	FastAPI
11.1	Understanding	the	Starter	Kit
11.2	Implementing	the	usage	instructions
11.3	Implementing	the	dictionary
11.4	Testing	the	API
11.5	:	FastAPI	OpenAPI	Docs	and	Swagger	UI
11.6	Handling	a	list	of	words
11.7	Testing	The	API

Chapter	12:	Image	filters	using	FastAPI
12.1	Bonus:	Deployment	to	Heroku

Chapter	13:	FastAPI	async	/	await
13.1	Making	the	program	asynchronous
13.2	Making	the	filter	API	asynchronous
13.3	Test	Scenario	1
13.4	Test	Scenario	2
13.5	Test	scenario	3
13.6	Test	Scenario	4
13.7	Conclusion
13.8	Bonus	Challenge

Chapter	14:	Making	a	TODO	API
14.1	API	Specifications
14.2	Initialise	the	environment
14.3	Understanding	the	starter	kit
14.4	Request	Body	and	Data	Validation
14.5	Data	Model	for	TODO
14.6	Task	manager
14.7	Building	the	API
14.8	Final	API	design
14.9	Testing	the	API
14.10	Where	to	from	here?

Au	Revoir

About	the	Author
Acknowledgements

Prerequisites
1.	Internet
Access	to	internet	is	needed	to	download	resources

2.	Accounts
You	need	to	create	the	following	accounts

1.					GitHub	:			https://www.github.com
2.					Google	:			https://www.google.com

3.	Operating	System
Any	one	of	the	following	operating	systems	will	do

1.					Windows	10	build	17063	and	later	(April	2018)
2.					Linux	(Ubuntu	18.04,		etc.)
3.					MacOS	(10.12.6	or	above)

4.	Python
Install	the	latest	version	of	Python	for	your	Operating	System	from.	Make	sure
you	add	Python	to	the	PATH	variable	by	checking	the	highlighted	boxes	below.

https://www.python.org/downloads/

5.	Terminal

For	Windows:
CMD.exe	is	good	enough	for	our	purposes.	You	can	open	it	by	pressing	⊞
Windows	Key	+	R	together	and	running	“CMD”.

You	can	also	use	PowerShell;	however,	it	will	require	you	to	remove	the	alias	for
curl	which	is	mapped	incorrectly	to	a	cmdlet	by	running

Remove-Item	alias:curl

https://www.github.com
https://www.github.com
https://www.google.com
https://www.google.com

You	will	need	to	run	the	above	every	time	you	start	a	new	PowerShell	terminal.

For	Linux	/	MacOS:
Most	distributions	of	Linux	&	macOS	come	with	terminals	&	cURL	in-built.

Common	to	all	OS:
Make	sure	cURL	is	installed	by	running	the	below	command

curl	-V

If	you	get	any	error	or	cURL	is	not	installed	download	and	install	relevant
version	from	the	below	link

https://curl.haxx.se

6.	Text	Editor	/	IDE
You	can	use	any	Text	Editor	/	IDE	that	you	are	comfortable	with,	but	VSCode	is
recommended	due	to	its	tight	integration	with	GitHub	,	Docker	,	and	WSL	.

Download	the	appropriate	version	of	VSCode	for	your	OS	and	install	from:

https://code.visualstudio.com/download

In	VSCode	,	go	to	“	Extensions	”	search	for	Python	and	install	the	extension	from
Microsoft	called	Pylance	.

Please	ensure	you	login	into	the	VSCode	account	using	your	GitHub	Credentials,
this	will	enable	you	to	use	VSCode	terminal	with	GitHub	without	typing	in
username	and	password	repeatedly.

7.	Git	for	Version	Control
Recommended	for	Beginners	:	If	you	know	absolutely	nothing	about	Git	,	and
are	a	Windows	or	macOS	user,	download	the	GitHub	for	Desktop	from	below.

https://desktop.github.com/

Otherwise	for	advanced	users,	download,	install,	and	configure	the	command
line	utility.

Downloading	Git:	Check	if	Git	is	already	available	by	running	the	below	in	the

terminal

git	--version

If	you	see	an	output,	you	don’t	need	to	do	anything.	But	if	you	get	an	error,
proceed	to	the	below	URL,	and	download	and	install	the	appropriate	version	of
Git	for	your	operating	system

https://git-scm.com/downloads

Configure	Git	:	Check	if	Git	is	already	available	by	running.	Open	the	terminal
and	run	the	below	commands	using	your	account	details

git	config	--global	user.name	"Your	name	here"	
git	config	--global	user.email	"your_email@example.com"

8.	Docker	for	Desktop	(Optional)
If	you’re	running	a	CLI	Linux,	it’s	likely	I	don’t	need	to	explain	this.	For	others,
download	the	appropriate	version	of	Docker	for	Desktop	for	your	OS	and	install
from:

https://www.docker.com/products/docker-desktop/

9.	Jupyter	Notebook
Jupyter	Notebook	is	a	browser	based	interactive	iPython	application	that	you	can
use	to	build	your	code	by	testing	it	step	by	step.	Makes	life	infinitely	easier.

Jupyter	requires	Python	&	pip	to	be	installed.	To	install	Jupyter	Notebook	,	open
the	terminal	and	type	the	below	to	install	Jupyter	Notebook

pip	install	notebook

Once	done	just	run	the	below	command	in	the	terminal	to	launch	the	Jupyter
Notebook	in		your	default	browser.

jupyter	notebook
	

Note:	You	can	also	use	Jupyter	Lab	or	Google	Colab	instead	of	Jupyter	Notebook.

	

Chapter	1:	Introduction	to	Web	APIs
If	you’re	a	beginner	even	the	thought	of	APIs	is	somewhat	scary.	What	kind	of
dark	magic	is	that?	And	why	is	everyone	paying	hundreds	of	thousands	to	API
developers.	Do	they	drink	blood	and	sacrifice	goats	in	a	circle	under	moon	light?

Pretty	soon	while	the	cool	kids	claim	to	be	inventing	calculus	and	you	are	out	of
the	loop	and	feel	like	Andy	below.	If	you	identify	with	it,	you’re	in	luck.	We	are
going	to	talk	about	APIs.

1.1	What	is	API?
API	is	an	acronym	for	A	pplication	P	rogramming	I	nterface,	but	nobody	calls	it	that
just	like	nobody	calls	USB	a	Universal	Serial	Bridge	.	The	technical	meaning	of
API	is	that	it	is	a	set	of	definitions	and	protocols	for	building,	communicating,
and	integrating	application	software(s),	thus	the	term	“	Interface	”.

But	technical	jargons	apart,	APIs	are	just	a	way	to	interact	with	applications
whose	internal	workings	are	not	visible	to	external	users.	APIs	allow	the	external
users	(clients)	to	“	request	”	something	from	the	application	or	server	and	get	a
corresponding	“	response	”.

In	fact,	you	have	already	used	the	real-world	equivalent	of	APIs	.	For	example,
riding	in	an	old-fashioned	cab.	To	get	a	ride	in	a	cab	you	would	need	to

1.					“	Request	”	a	cab	to	pick	you	up,	along	with	your	contact	and	location	details
2.					In	“	response	”	to	your	request	you	get	a	cab	details	and	the	cab	picks	you	up
3.					You	again	“	request	”	the	cab	driver	to	take	you	to	a	specific	location
4.					In	“	response	”	the	cab	driver	drives	you	to	your	desired	location

Now,	you	don’t	need	to	know	how	to	operate	a	car,	to	be	able	to	get	from	one
place	to	another,	the	cab	driver	acts	like	an	API	.	You	might	not	know	anything
about	how	a	car	operates	but	you	can	interact	with	the	API	layer,	that	is,	the
driver,	and	navigate	to	your	desired	outcome.

Another	way	to	look	at	APIs	is,	it	is	a	magic	box	that	takes	input	in	a	very
specific	format	and	gives	output	in	a	very	specific	format.	In	application
development	this	“	standardisation	”	of	input	and	output	(I/O)	is	useful	and
makes	it	easy	for	a	developer	to	interact	with	systems	that	they	don’t	control.

1.2	Types	of	APIs
If	you’ve	heard	the	term	API	,	chances	are	it	was	used	to	refer	to	a	very	specific
type	of	API	called	Web	API	.	However,	in	general,	the	term	API	could	have	other
meanings	based	on	what	the	API	is	being	used	for.

Based	on	usage,	APIs	can	be	broadly	divided	into	four	categories	as	listed	below:

1.					Web	APIs	are	used	to	communicate	between	a	server	and	a	client	over	the	internet.	Web	API	as	the
name	suggests	is	a	very	specific	type	of	API	used	to	interact	and	manipulate	information	or
resources	over	internet.

2.					Remote	APIs	define	the	standards	of	interaction	for	applications	running	on	different	machines.
For	example,	JDBC	connectivity	API	that	connects	a	database	to	the	program

3.					Libraries	and	Frameworks	acts	as	the	interface	to	a	software	library	is	also	a	type	of	API
4.					Operating	Systems	can	specify	APIs	for	applications	to	interact	with	the	device.	For	example,

Android	devices	with	camera	requires	an	OS	API	to	enable	control	of	the	camera	by	any	app

Each	one	these	could	have	its	own	sub-categories.	The	scope	of	this	book	is
limited	to	Web	APIs	.

1.3	What	is	a	Web	API?
Web	APIs	are	used	for	communication	between	a	server	and	a	client	over	the
internet	or	any	network.	Typically,	Web	APIs	use	HTTP	(HyperText	Transfer
Protocol)	request	methods,	also	known	as	HTTP	verbs,	to	communicate	with	a
server.

HTTP	standards	(RFCs	7231	&	RFC	5789	but	that	is	not	important)	specify	a
set	of	“	request	methods	”	that	indicates	the	action	that	is	to	be	performed.

These	HTTP	request	methods	are:

1.					GET	:	“Gets”	the	specified	resources	from	an	endpoint.	This	results	in	a	response	from	the	server
without	any	change	in	the	state	of	the	server

2.					POST	:	Sends	some	data	to	an	endpoint,	typically	resulting	in	an	action	that	in	turn	changes	the
state	of	the	server

3.					PUT	:	Replaces	some	data	on	a	server.	Like	POST	but	different	in	the	sense	that	PUT	requests	will
always	produce	the	same	result

4.					DELETE	:	The	DELETE	method	deletes	the	specified	resource	from	server
5.					HEAD	:	The	HEAD	method	asks	for	a	response	like	that	of	a	GET	request,	but	only	the	status	line

and	header	section

6.					CONNECT	:	The	CONNECT	method	establishes	a	tunnel	to	the	server	identified	by	the	target
resource

7.					OPTIONS	:	The	OPTIONS	method	is	used	to	describe	the	communication	options	for	the	target
resource.

8.					TRACE	:	The	TRACE	method	performs	a	message	loop-back	test	along	the	path	to	the	target
resource.

9.					PATCH	:	The	PATCH	method	is	used	to	apply	partial	modifications	to	a	resource.

1.4	Getting	our	hands	dirty
(Please	ensure	the	prerequisites	as	specified	in	the	prerequisites	chapter	earlier	are	set	up	and	satisfied
before	proceeding.)

CoinDesk	is	a	cryptocurrency	news	website,	like	Yahoo	Finance	,	but	for
cryptocurrencies.	CoinDesk	offers	a	public	and	free	API	that	provides	the	latest
Bitcoin	prices.	We	will	interact	with	this	CoinDesk	API	to	fetch	the	latest	Bitcoin
prices	using	a	classic	utility	cURL	.

But	before	that,	open	your	favourite	web	browser	(Firefox,	Chrome,	Edge,	etc.)
and	open	the	below	website	address.

https://api.coindesk.com/v1/bpi/currentprice.json

You	would	see	some	seemingly	cryptic	text	displayed	on	your	browser	that	will
be	like	below.

{	"time"	:{	"updated"	:	"May	13,	2021	17:35:00	UTC"	,	"updatedISO"	:	"2021-05-13T17:35:00+00:00"	,
"updateduk"	:	"May	13,	2021	at	18:35	BST"	},	"disclaimer"	:	"This	data	was	produced	from	the
CoinDesk	Bitcoin	Price	Index	(USD).	Non-USD	currency	data	converted	using	hourly	conversion
rate	from	openexchangerates.org"	,	"chartName"	:	"Bitcoin"	,	"bpi"	:{	"USD"	:{	"code"	:	"USD"	,	"symbol"
"$"	,	"rate"	:	"47,190.4555"	,	"description"	:	"United	States	Dollar"	,	"rate_float"	:	47190.4555	},	"GBP"
{	"code"	:	"GBP"	,	"symbol"	:	"£"	,	"rate"	:	"33,618.8109"	,	"description"	:	"British	Pound	Sterling"	
"rate_float"	:	33618.8109	},	"EUR"	:{	"code"	:	"EUR"	,	"symbol"	:	"€"	,	"rate"	:	"39,064.2119"	,
"description"	:	"Euro"	,	"rate_float"	:	39064.2119	}}}

What	is	this	garbage?	It	is	a	response	that	the	API	has	sent.

When	you	opened	the	URL	above	using	a	browser,	what	you	have	actually	done
is

1.	 Used	your	browser	to	send	a	“	GET	”	request	to	the	endpoint
2.	 The	API	then	sent	a	response	back	with	two	component	s

a.	 An	HTTP	200	OK	Status	indicating	the	request	was	valid
b.	 A	payload	with	data	that	is	specified	in	the	documentation

3.	 The	browser	then	receives	this	data	and	renders	it	for	you	to	see

So,	your	browser	just	interacted	with	CoinDesk	API	.	But	this	is	not	useful	if	one
wants	to	build	an	app	to	track	Bitcoin	prices	because	they	will	have	to	open	a
browser,	type	the	URL	and	then	copy	the	data	from	the	browser	to	be	able	to	use
it	and,	of	course,

1.5	Getting	hands	dirty	programmatically
To	use	it	in	a	program,	we	need	to	be	able	to	get	this	data	programmatically.	So,
let’s	go	one	level	deeper	and	try	that	out.

On	windows:	Press	⊞	Windows	Key->	Search	Terminal	->		Open	->	then	run:
curl	-i	-X	GET	"https://api.coindesk.com/v1/bpi/currentprice.json"

On	Linux	/	Mac:	Open	Terminal	and	run:

curl	-i	-X	GET	"https://api.coindesk.com/v1/bpi/currentprice.json"

The	URLs	like	the	one	above	is	also	referred	to	as	an	“	endpoint	”.

Once	completed	you	will	get	a	response	like	below:

HTTP/	1.1	200	OK	
Content-Type:	application/javascript	
Content-Length:	679	
Connection:	keep-alive	
Access-Control-Allow-Origin:	*	
Cache-Control:	max-age=	15	
Date:	Mon,	10	May	2021	05	:	11	:	35	GMT	
Expires:	Mon,	10	May	2021	05	:	12	:	07	UTC	
Server:	nginx/	1.18.0	
X-Powered-By:	Fat-Free	Framework	
X-Cache:	Hit	from	cloudfront	
Via:	1.1	b	83963	f	0701	c	4	af	7	f	684	fb	9	b	32	b	49	e	75	.cloudfront.net	(CloudFront)	
X-Amz-Cf-Pop:	DEL	54	-C	3	
X-Amz-Cf-Id:	INdmxs	7	vfcYBcjYRBWz_-YE	8	T	2	ZJfKi	0	QeZP	4	Z	8	y	2	mP	8	bbo	62	lqitg==	
	
{	"time"	:{	"updated"	:	"May	10,	2021	05:11:00	UTC"	,	"updatedISO"	:	"2021-05-10T05:11:00+00:00"	,
"updateduk"	:	"May	10,	2021	at	06:11	BST"	},	"disclaimer"	:	"This	data	was	produced	from	the
CoinDesk	Bitcoin	Price	Index	(USD).	Non-USD	currency	data	converted	using	hourly	conversion
rate	from	openexchangerates.org"	,	"chartName"	:	"Bitcoin"	,	"bpi"	:{	"USD"	:{	"code"	:	"USD"	,	"symbol"

"$"	,	"rate"	:	"59,387.4712"	,	"description"	:	"United	States	Dollar"	,	"rate_float"	:	59387.4712	},	"GBP"
{	"code"	:	"GBP"	,	"symbol"	:	"£"	,	"rate"	:	"42,342.7919"	,	"description"	:	"British	Pound	Sterling"	
"rate_float"	:	42342.7919	},	"EUR"	:{	"code"	:	"EUR"	,	"symbol"	:	"€"	,	"rate"	:	"48,872.1474"	,
"description"	:	"Euro"	,	"rate_float"	:	48872.1474	}}}

1.5.1	Explanation
cURL	a	command	line	utility	developed	almost	25	years	ago,	its	main	function	is
to	fetch	the	response	from	a	URL.

Using	the	flag	‘ 	i 	’	with	cURL	includes	protocol	response	headers	in	the	output,
and	‘ 	X 	’	allows	us	to	define	the	method	used,	in	this	case	“	GET	”.

And	you	can	see,	the	first	part	of	the	response	above	are	the	headers	while	the
second	part	is	the	content.	Headers	are	useful	in	understanding	the	behaviour	of
the	endpoint.

The	first	line	that	says	“ 	HTTP/1.1	200	O	K 	”	is	called	a	response	status	code	.	A	“ 	200	O
K 	”	response	code	means	your	request	was	valid	and	it	was	successfully
responded	to.		If	you	change	anything	in	the	endpoint	URL	and	try	again,	you
will	get	an	“ 	HTTP/1.1	404	Not	Foun	d 	”	error	meaning	your	request	couldn’t	be
processed	by	the	server.

There	are	several	such	other	response	codes,	most	of	them	will	be	auto	generated
by	our	application.	However,	you	can	read	about	them	here	at	Mozilla	:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

The	content	part	of	the	response	in	curly	braces	{	} 	follows	a	standard	format
called	JSON	that	is	used	to	store	and	transmit	data	to	and	from	the	endpoint.	In
this	example,	the	API	responds	by	sending	the	price	of	Bitcoin	in	USD	,	GBP	,	and
EUR	along	with	several	other	important	information	such	as	timestamp,
descriptions,	etc.

Using	this	you	can	build	a	simple	program	that	displays	the	price	of	Bitcoin	to
your	users.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

1.6	JavaScript	Object	Notation	(JSON)
JSON	is	composed	of	“	key	”	and	“	value	”	pairs	separated	by	a	colon	‘:’	in	the
format	{“key”	:		“value”	} 	,	a	visual	demonstration	below

The	content	in	section	1.5	above	seems	garbled	but	once	prettied	the	pattern
becomes	quite	clear	and	clearly	follows	the	key-value	pair	method.

{	
"time"	:{	
			"updated"	:	"May	10,	2021	05:11:00	UTC"	,	
			"updatedISO"	:	"2021-05-10T05:11:00+00:00"	,	
			"updateduk"	:	"May	10,	2021	at	06:11	BST"	
},	
"disclaimer"	:	"This	data	was	produced	from	the	CoinDesk	Bitcoin	Price	Index	(USD).	Non-USD
currency	data	converted	using	hourly	conversion	rate	from	openexchangerates.org"	,	
"chartName"	:	"Bitcoin"	,	
"bpi"	:{	
			"USD"	:{	
					"code"	:	"USD"	,	
					"symbol"	:	"$"	,	
					"rate"	:	"59,387.4712"	,	
					"description"	:	"United	States	Dollar"	,	
					"rate_float"	:	59387.4712	
		},	
			"GBP"	:{	
					"code"	:	"GBP"	,	
					"symbol"	:	"£"	,	
					"rate"	:	"42,342.7919"	,	
					"description"	:	"British	Pound	Sterling"	,	
					"rate_float"	:	42342.7919	
		},	
			"EUR"	:{	
					"code"	:	"EUR"	,	
					"symbol"	:	"€"	,	
					"rate"	:	"48,872.1474"	,	

					"description"	:	"Euro"	,	
					"rate_float"	:	48872.1474	
		}	
}	
}

JSON	is	the	most	widespread	means	of	transmitting	data	between	server	/	client
or	vice	versa,	but	it	is	not	mandatory.

Data	can	also	be	sent	as	unformatted	files,	images	and	other	multimedia,	XML	,
or	even	plain	text.	However,	JSON	’s	standardised	format	and	lightweight	nature
combined	with	its	easy	interoperability	with	most	programming	languages	has
made	it	the	de-facto	standard	for	transmitting	data.	In	fact,	it	is	possible	to	add
media	files	in	JSON	as	well.		JSON	can	be	easily	imported	and	used	just	like	a
Python	dictionary.

NOTE:	JSON	format	uses	double	inverted	commas,	while	a	Python	Dictionary	can	be	either	single	or
double	inverted	commas.

1.7	Why	are	APIs	needed?
There	are	innumerable	reasons	for	using	APIs	,	and	several	ways	in	which	APIs
are	used,	some	of	them	not	so	good.

Figure	1	-	APIs:	Helping	developers	connect	to	things	they	shouldn’t

Some	key	use	cases	for	APIs	are	described	below.

1.7.1	Integrating	multiple	applications
This	scenario	occurs	when	two	applications	need	to	communicate	and	exchange
data.	E.g.	let’s	say	a	firm	is	using	Salesforce	as	its	Customer	Relationship
Management	(CRM)	system	but	is	using	SAP	as	its	Financial	Account	(FI)	system.
To	present	an	accurate	picture	of	growth	the	two	systems	need	to	talk	to	each
other.	This	is	typically	achieved	using	API	“adapters”	that	enable	bi-directional
data	transfer.

1.7.2	Building	cross-platform	applications
You	can	use	Facebook	via	web	browser,	Android	App	,	and	iOS	App	.	Facebook
needs	to	ensure	that	any	updates	from	either	of	the	3	channels	are	reflected	in
other	apps	in	real-time	which	is	difficult	to	achieve	if	there	are	3	separate	apps
with	their	own	data.

To	solve	this,	Facebook	has	consolidated	their	data	in	one	distributed	system	and
built	their	own	API	on	top	of	that	can	be	used	by	developers	(both	internal	or
external)	to	develop	apps	that	can	do	anything	from	posting	an	update,	uploading
a	pic	or	interacting	with	other	users.

1.7.3	Enhancing	functionality	of	applications
Have	you	logged	into	any	non-Google	app	or	website	using	your	Google
credentials?

This	is	enabled	by	Google’s	oAuth	API	that	enables	external	apps	to	use	Google’s
authentication	system	to	manage	their	user	login.

Similarly,	you	can	use	APIs	provided	by	Cloud	Service	Providers	such	as	Amazon
Azure	,	or	GCP	to	add	certain	individual	features	and	build	fully	functional
applications.

Do	you	need	to	store	pictures?	Use	AWS	S3	API	to	upload	directly	to	the	cloud.

Want	to	build	a	chat	app	that	can	automatically	translate	whatever	you	type.	Use
GCP’s	Translation	API	.

1.7.4	Provide	external	access	to	your	application
You	want	to	build	an	automated	trading	app	that	buys	and	sells	stocks	using	your
own	magic	algorithm?	You	need	real-time	and	historical	data	to	build	these
models.	A	broker	or	a	financial	data	provider	will	provide	you	API	access	for	you
to	be	able	to	leverage	and	build	applications.

1.7.5	As	an	app	backend
RESTful	(more	on	that	ahead)	backend	designs	are	usually	built	as	an	API	that
can	be	called	by	the	frontend.	This	is	a	foundational	concept	for	building
serverless	apps.

1.8	API	Design	Patterns
We	talked	about	HTTP	methods	in	an	earlier	section.	You	can	use	the	9	HTTP
methods	and	combine	them	in	many	ways	and	create	systems	that	are	either	too
complex	to	manage	or	are	difficult	to	use.

To	solve	this	problem,	engineers	have,	over	the	years,	developed	several
architectural	patterns	and	best	practices	such	as

1.8.1	RESTful	APIs
RESTful	or	REST	APIs	are	the	most	dominant	architectural	pattern	in	use	today.

The	name	comes	from	a	doctoral	dissertation	by	Roy	Fielding	in	2000	that
introduced	the	term	“	Re	presentational	S	tate	T	ransfer”.	It	uses	a	subset	of	HTTP
define	6	constraint	guidelines	that	restrict	the	way	a	server	can	process	and
respond	to	a	client’s	requests.	APIs	that	conform	to	these	guidelines	are	called	“
RESTful	APIs	”.

RESTful	APIs	are	typically	built	to	be	used	by	only	4	HTTP	method,	GET	,	POST
,	PUT	,	and	DELETE	and	is	the	predominant	architectural	style	for	building
websites	and	Web	APIs	.

GET	:	Used	to	select	or	retrieve	data	from	a	server.	Can	be	used	to	same	limited	data	as	well.
POST	:	Used	to	send	or	write	data	to	the	server.	Typically	used	to	send	sensitive	information	such
as	credentials,	financial	data,	or	large	data	sets	such	as	files
PUT	:	Used	to	update	data	that	is	already	present	on	the	server,	e.g.	updating	database	entries,
replacing	files,	etc
DELETE	:	Used	to	delete	existing	data	from	the	server

RESTful	APIs	are	also	“	stateless	”	meaning	it	doesn’t	remember	anything	about
your	previous	interaction.	They	behave	like	someone	who	owes	you	money	and
pretend	to	not	remember	anything	about	any	previous	talks.

Jokes	aside,	what	this	means,	is	when	interacting	with	RESTful	APIs	,	the	client
(you)	have	the	responsibility	to	own	and	provide	any	historical	data	or	context	if
needed.

For	example,	let’s	say	you	login	to	Google	website	using	its	oAuth2	API	,	which
is	supposedly	RESTful	,	then	if	you	go	open	Gmail	,	you	don’t	need	to	login
again,	but	Google	doesn’t	remember	that	you	have	already	logged	in.	Instead,
Google	sets	a	cookie	on	your	system	that	includes	a	“	token	”	(technical	term	is
JavaScript	Web	Tokens	or	JWTs).	When	you	go	to	Gmail	,	Gmail	asks	your
browser	if	it	already	has	a	token,	if	it	does	it	lets	you	pass,	if	not,	you’re	forced
to	login	again.

Is	it	a	good	thing?	Generally,	but	it	depends.	Stateful-APIs	have	their	place	and
use	cases,	but	in	today’s	mass	user	market	the	advantage	of	Stateless	APIs	is	that
because	the	responsibility	of	remembering	session	data	is	on	the	client	or
browser	it	makes	it	easier	to	scale.
We	will	mainly	be	focused	on	REST	API	patterns	in	the	APIs	that	we	build	in	this	book.

1.8.2	GraphQL	APIs
Developed	initially	by	Facebook	but	eventually	released	as	an	Open	Source
project.	GraphQL	allows	the	requestor	to	define	the	structure	of	data	that	is

required.	GraphQL	has	since	been	touted	as	REST	killer	but	just	like	all	other
such	“killers”	it	hasn’t	been	able	to	replace	REST	.

REST	APIs	are	quite	inflexible	when	it	comes	to	being	able	to	handle	the
changing	requirements	from	the	clients	that	is	accessing	them.	GraphQL	is
designed	to	solve	this	by	allowing	users	to	customise	their	request	and	picking
the	data	they	want	in	return.

The	CoinDesk	demo	was	an	example	of	a	REST	API	,	however,	if	CoinDesk
allowed	a	user	to	define	exactly	the	data	it	needed,	the	date	from	which	the
prices	are	needed,	and	the	currency,	REST	API	design	would	have	proved	to	be
very	complex.	However,	using	GraphQL	in	these	scenarios	is	much	easier	to
build	APIs	as	well	as	consume	them.

1.8.3	CRUD	APIs
Is	typically	used	to	build	APIs	for	Database	,	it	is	mapped	to	the	REST	standards.
CRUD	Stands	for	C	REATE,	R	EAD,	U	PDATE,	D	ELETE.	These	are	the	actions
that	can	be	performed	by	any	database,	and	if	you	create	a	REST	API	that
handles	DB	operations,	you’re	in	effect	created	a	CRUD	API	.	Consequently,	often
REST	&	CRUD	are	used	interchangeably	when	talking	about	APIs	that	deals
with	DBs	.

1.8.4	SOAP	APIs
S	imple	O	bject	A	ccess	P	rotocol	or	SOAP	is	one	of	the	earliest	API	specifications
and	was	used	to	define	messaging	protocol	specification	for	exchanging	data
between	two	systems.

SOAP	has	its	use	cases	and	advantages,	but	nobody	uses	it	to	develop	Web	APIs

nowadays.	Well,	nobody	who	is	of	sound	mind	and	is	not	stuck	with	legacy
systems	that	are	built	on	SOAP	.

The	obsolescence	of	SOAP	APIs	is	not	due	to	its	deficiencies	but	more	to	do	with
developer	preferences	where	REST	with	its	JSON	based	communication	was
easier	to	implement	and	interact.

Chapter	2:	Python	&	Working	with	APIs
Interacting	with	APIs	using	cURL	and	other	utilities	are	fun,	but	in	building
applications	and	most	other	use	cases	they	are	too	cumbersome.

In	such	cases,	modern	programming	languages	such	as	Python	,	Go	,	Rust	,	C#	,	
Ruby	,	etc	are	used.

And	before	I	get	any	hate,	there	are	developers	who	can	build	full	utilities	using
PowerShell	or	Bash	,	kudos	to	them,	but	we	lesser	mortals	should	stick	to	mortal
languages.

2.1	Programmatically	accessing	an	API
In	the	last	chapter,	we	used	a	command	line	utility	cURL	to	fetch	API	responses.
Now	let’s	try	to	do	that	with	Python	.	We	are	going	to	use	Jupyter	Notebook	to	do
that	inside	of	a	program.

Open	a	Jupyter	Notebook	(or	Google	Colab)	and	create	a	new	Notebook.

Run	the	following	in	Jupyter	notebook

#Jupyter	Notebook/	In[1]	
import	requests

URL	=	"https://api.coindesk.com/v1/bpi/currentprice.json"

response	=	requests.get(URL)	
data	=	json.loads(response.content.decode("utf-8"))	
data

This	snippet	does	the	following

1.					Imports	Python’s	requests
2.					Stores	the	URL	of	the	endpoint	in	a	string	variable	called	“	URL	”
3.					Sends	a	GET	request	to	the	URL
4.					extract	the	response	formatted	as	JSON
5.					And	then	prints	out	the	response	data	as	below

{'time':	{'updated':	'May	29	,	2021	14:	54	:	00	UTC',	
'updatedISO':	'	2021-05-29	T14:	54	:	00	+	00	:	00	',	
'updateduk':	'May	29	,	2021	at	15:	54	BST'},	
'disclaimer':	'This	data	was	produced	from	the	CoinDesk	Bitcoin	Price	Index	(USD).	Non-USD

currency	data	converted	using	hourly	conversion	rate	from	openexchangerates.org',	
'chartName':	'Bitcoin',	
'bpi':	{'USD':	{'code':	'USD',	
		'symbol':	'&#	36	;',	
		'rate':	'	34	,698.0350',	
		'description':	'United	States	Dollar',	
		'rate_float':	34698.035	},	
'GBP':	{'code':	'GBP',	
		'symbol':	'£',	
		'rate':	'	24	,453.3361',	
		'description':	'British	Pound	Sterling',	
		'rate_float':	24453.3361	},	
'EUR':	{'code':	'EUR',	
		'symbol':	'€',	
		'rate':	'	28	,458.3915',	
		'description':	'Euro',	
		'rate_float':	28458.3915	}}}

This	is	exactly	what	we	got	in	the	last	chapter.
Brilliant!	We	have	not	got	the	JSON	data	from	CoinDesk	API	programmatically	using	Python.

2.2.1	Extracting	the	price	of	Bitcoin
What	if	we	wanted	to	extract	only	the	latest	price	of	Bitcoin	?

As	you	can	see	from	the	previous	section,	the	Bitcoin	price	is	under	‘bpi’	->	‘USD’	->
‘rate_float	’ 	.	To	get	this	data,	run	the	below	in	Jupyter	Notebook

#Jupyter	Notebook/Input#2	
bitcoin_price	=	data["bpi"]["USD"]["rate_float"]	
bitcoin_price

This	will	throw	out	the	latest	Bitcoin	price	in	USD	,	which	at	the	time	of	writing
this	was	“	29561.038	”.

Congratulations!	Now	you	can	get	the	price	of	Bitcoin	anytime	you	want.

2.2.2	Bonus	Challenge	#1
Guess	the	date	this	section	was	written	on	based	on	the	price	of	Bitcoin	and	send	the	answer	to
student@CloudBytes.dev	with	the	subject	as	"Building	Web	APIs	with	Python:	Bonus	Challenge	#1".

The	first	three	correct	responses	will	get	$50	Amazon	gift	vouchers.

Chapter	3:	Building	APIs	with	Flask
Flask	is	a	micro	web	framework	written	in	Python	.	It	is	called	a	microframework
because	in	the	framework	itself	is	no-frills	added	and	comes	without	any	feature
bundled	in.

More	advanced	web	frameworks	such	as	Django	has	almost	everything	needed	to
build	a	fully	functioning	website	such	as	DB	handling,	user,	and	session
management,	etc.

Flask	on	the	other	hand,	has	almost	nothing	but	supports	extensions	that	can	be
used	to	bring	in	these	features.	Microframeworks	are	preferred	by	many	because
it	is	lightweight	but	still	extensible	to	add	any	feature	with	ready	to	use	plugins.

In	subsequent	chapters	we	will	use	Flask	and	its	plugin	to	build	a	simple	API
that	will	respond	with	"	Hello,	World!	"

3.1	Initialise	the	development	environment
To	process	first,	we	need	to	initialise	our	development	environment.	Please
follow	the	below	instruction	step	by	step

3.1.1	Fork	the	starter	kit	GitHub	repository
This	will	create	a	copy	of	the	repository	in	your	own	GitHub	account	that	you
can	update.

Step	1	:	Login	to		GitHub			and	navigate	to		the	starter	kit	repository
https://github.com/CloudBytesDotDev/web-apis-with-python

	
Step	2	:	Create	a	Fork	of	the	repository	by	clicking	on	the	fork	button	on	top
right	side	of	the	webpage	as	shown	below

https://github.com/
https://github.com/UberPython/web-apis-with-python

3.1.1	Clone	the	repository
Open	your	terminal,	navigate	to	the	folder	where	you	want	to	save	the	git
repository,	e.g.	I	typically	keep	them	in	“ 	C:\Users\MyName\Documents\GitHu	b 	”.

Clone	this	new	repository	in	your	account.	To	copy	the	Git	URL	press	on	the
green	"	Code	"	button	and	then	click	on	the	clipboard	icon	as	shown	below

Then	run	the	following	command	from	your	terminal	with	Git	installed,
replacing	"	<myUserName>	" 	with	your	actual	GitHub	username

git	clone	https://github.com/<myUserName>/web-apis-with-python.git

To	learn	basics	of	how	to	use	Git	&	GitHub	,	do	a	quick	read	of	the	README
available	in	the	starter	kit	on	the	GitHub	,	or	use	the	below	link.

https://github.com/CloudBytesDotDev/web-apis-with-python/blob/main/README.md

3.1.2	Creating	a	Python	Virtual	Environment
It	is	recommended	to	create	a	different	virtual	environment	for	each	repository.
You	can	do	so	by:

a)	Open	the	terminal	and	navigate	to	the	repository	folder
E.g.	if	you	cloned	the	above	example	in	“C:\Users\MyName\Documents\GitHub\hello-api-
python-flask	” 	,	then	navigate	to	that	folder	by	running

cd	C:\Users\MyName\Documents\GitHub\hello-api-python-flask

b)	Create	a	virtual	environment	by	running	the	following
command
On	Windows	:
python	-m	venv	env

On	Linux/macOS
python3	-m	venv	env

“	env	”	is	the	name	of	the	virtual	environment	you	have	created.

3.1.3	Activate	the	virtual	environment
Run	the	below	at	the	prompt	from	the	folder	where	you	created	the	virtual
environment

./env/Scripts/activate

Once	successfully	activated	the	terminal	prompt	changes	to

(env)	PS	C:\Users\myName\Documents\GitHub\project>

Notice	the	(env)	in	the	beginning	that	highlights	that	the	env	virtual	environment
is	active.

3.1.4	Install	Python	Dependencies
The	Python	libraries	that	are	required	for	this	example	are	listed	in	" 	requirements.tx
",	one	of	the	files	that	were	cloned	from	GitHub	.

To	install	these	libraries,	in	the	terminal	run

pip3	install	-r	requirements.txt

Note	:	You	can	also	use	docker	files	available	in	the	repository	to	run	the	environment	in	a	docker	container
directly	using	VSCODE.	This	avoids	the	hassle	of	creating	and	managing	virtual	environments.

Congratulations!	The	development	environment	for	this	section	is	configured.

You	can	use	the	same	instructions	for	other	exercises	as	well	by	changing	the
URL	of	the	GitHub	repository

3.1.5	Deactivating	the	virtual	environment
You	should	create	a	separate	virtual	environment	for	each	project	in	the	project
folder,	to	do	so,	you	will	need	to	first	deactivate,	to	do	so,	just	type	and	run

Deactivate

3.2	Understanding	the	Starter	Kit
Before	we	begin,	all	the	code	that	will	be	used	in	this	book	is	provided	in	the
book,	so	you	don’t	really	need	to	do	anything	with	Git	,	but	the	intent	of	the
starter	kit	is	to	give	you	a	feel	of	how	is	it	done	in	real	world	scenarios.

Repository	Structure	:	The	repository	contains	several	branches	that	contain	the
starter	kit	for	each	problem	that	we	are	going	to	solve.	They	are	listed	as	below

git
├──	p1-hello-api-flask
├──	s1-hello-api-flask	
├──	p2-byog-flask
├──	s2-byog-flask
├──	p3-dictionary-api-flask
├──	s3-part1-dictionary-api-flask
├──	s3-part2-dictionary-api-flask
├──	s3-bonus-dictionary-api-flask
├──	p4-image-filter-flask
└──	s4-image-filter-flask

“ 	p	1 	”	as	the	prefix	denotes	the	problem-1,	and	“ 	s	1 	”	denotes	solution	to	the
problem	1	that	has	been	provided	as	a	reference.

Each	problem	has	one	or	more	solution	scenarios	as	you	can	see	from	the	above

3.3	Initialising	the	starter	kit
Run	the	below	command	to	open	the	first	problem	starter

git	checkout	p1-hello-api-flask

This	will	automatically	fetch	the	files	under	“ 	p1-hello-api-flas	k 	”	branch	which
contains

.
├──	requirements.txt
└──	app.py

(Ignore	the	other	files	that	you	may	see	as	they	are	not	important	at	the	moment)

a)	requirements.tx	t 	:	contains	the	list	of	Python	libraries	that	are	required	to	be
installed	for	this	exercise.	We	did	this	in	the	previous	section.

b)	app.p	y 	:	Is	a	starter	template	which	will	contain	our	Flask	application	and
associated	logic.	The	contents	of	the	file	are	below	.

app.py
from		flask		import		Flask,	jsonify,	request
	
#	Initialise	the	app
app		=			Flask	(__name__)
	
#	Define	what	the	app	does
@app	.	get	("/greet")
def			index	():
					"""
					TODO	:
				1.	Capture	first	name	&	last	name
				2.	If	either	is	not	provided:	respond	with	an	error
				3.	If	first	name	is	not	provided	and	second	name	is	provided:	
							respond	with	"Hello	Mr.	<second-name>!"
				4.	If	first	name	is	provided	but	second	name	is	not	provided:	
							respond	with	"Hello,	<first-name>!"
				5.	If	both	names	are	provided:	respond	with	a	question,	
							"Is	your	name	<fist-name>	<second-name>
				"""
					return			jsonify	("TODO")
	

3.3	A	minimal	Flask	API

Our	minimal	API	will	simply	say	" 	Hello,	World	! 	"	when	it	receives	a	get	request.
Update	the	app.p	y 	to	the	below.

app.py
from		flask		import		Flask,	jsonify,	request
	
#	Initialise	the	app
app		=			Flask	(__name__)
	
#	Define	what	the	app	does
@app	.	get	("/greet")
def			index	():
					"""
					TODO	:
				1.	Capture	first	name	&	last	name
				2.	If	either	is	not	provided:	respond	with	an	error
				3.	If	first	name	is	not	provided	and	second	name	is	provided:	
							respond	with	"Hello	Mr.	<second-name>!"
				4.	If	first	name	is	provided	but	second	name	is	not	provided:	
							respond	with	"Hello,	<first-name>!"
				5.	If	both	names	are	provided:	respond	with	a	question,	
							"Is	your	name	<fist-name>	<second-name>
				"""
				return	"Hello,	World!"

3.3	Explanation
In	the	first	section	we	import	the	headers	required

from	flask	import	Flask,	jsonify,	request

Flas	k 	:	is	the	base	class	for	Flask	app	that	we	will	use	in	this	example

Ignore	jsonif	y 	&	reques	t 	for	now,	it	will	be	explained	in	subsequent	section

#	Initialise	the	app
app	=	Flask(__name__)

As	the	comment	says,	the	Flask	app	is	initialised	using	this	code

@app.get("/greet")

This	defines	the	URL	endpoint	where	we	need	to	send	the	API	request	to.	The	"	@
sign	before	it	is	a	Python	syntax	called	decorator.	It	is	used	to	apply	properties	of
one	method	to	another.	In	this	case,	the	properties	of	app.route() 	is	applied	to	the
function	defined	in	the	next	line,	i.e.	index().

@app.get("/greet")	
def	index	():	
			return	"Hello,	World!"

In	this	snippet	we	defined	the	index() 	method	that	will	respond	to	any	GET	requests
at	the	"/greet	" 	endpoints.

3.5	Running	the	API
To	run	the	API	,	open	the	VSCode	Terminal	at	and	run	the	following	command

flask	run

This	should	produce	an	output	as	shown	below

Note	the	output	at	the	bottom	that	states	" 	Running	on			http://127.0.0.1/5000	".	The	Flask
app	has	started	and	is	serving	at	the	address	mentioned	on	the	last	line	of	the
terminal	output,	“	http://127.0.0.1:5000	“.

Now	open	your	browser	and	enter	the	below	address	and	press	Enter

http://	127.0.0.1	:	500	/greet

http://127.0.0.1/5000
http://127.0.0.1/5000
http://127.0.0.1:5000

You	should	see	" 	Hello,	World	! 	"

3.5.1	What	just	happened?
A	brief	run-down	is,	we	asked	Flask	to

1.					Listen	to	the	route	‘ 	/gree	t 	’	using	@app.get("/greet")	which	represents	the	home	for	domain	URL
this	case	‘	https://127.0.0.1:5000/greet	’.

2.					Define	and	tell	the	listener	at		‘ 	/gree	t 	’	how	to	respond	using	def	index()
3.					Instructions	for	the	program	to	follow	if	a	request	is	received	at	" 	/gree	t 	",	i.e.	return	“Hello,

World!”

So	when	you	opened	the	address	in	the	browser,	the	browser	sent	a	GET	request
to	‘	https://127.0.0.1:5000/greet	’	which	was	captured	by	the	listener	at	‘ 	/ 	’,	then	the
listener	looked	for	the	instructions	under	@app.route(‘/’) 	and	found	the	function	index(
) 	.	It	then	executed	the	instruction	in	index() 	which	was	to	return	the	phrase	“ 	Hello,
World	! 	”.	That	response	is	what	you	see	rendered	in	your	browser.

3.6	Call	the	API	Programmatically
Let’s	open	the	terminal	and	run

curl	-i	-X	GET	"http://127.0.0.1:5000/greet"

The	response	from	the	API	will	be	like	the	below

HTTP/	1.0	200	OK	
Content-Type:	text/html;	charset=utf	-8	
Content-Length:	13	
Server:	Werkzeug/	2.0.1	Python/	3.9.4	
Date:	Sat,	22	May	2021	11	:	32	:	46	GMT	

Hello,	World!

Congratulations!	You	now	have	made	your	first	API.

NOTE:	The	Flask	App	will	not	automatically	update	if	you	change	the	code.	To	do	that	you	have	to	shut
down	by	pressing	“CTRL+C”	to	quit	first	and	then	restart	it	by	running	“flask	run”	again.

3.7	JSONIFY	the	response
If	you	noticed,	we	stated	earlier	that	JSON	is	the	de-facto	standard	form	of
communication	over	the	web.	But	this	response	displayed	on	the	browser,	does
not	look	like	a	JSON	.

https://127.0.0.1:5000/greet
https://127.0.0.1:5000/greet

How	do	we	convert	it	into	a	JSON	and	send	the	response	back?

We	need	to	restructure	our	program	by
1.	 Importing	jsonify	plugin	from	flask
2.	 Adding	descriptions	and
3.	 Creating	a	response	format

by	changing	app.p	y 	program	to	the	following

app.py
#hello-api-python-flask/app.py	
from	flask	import	Flask,	jsonify,	request	

#	Initialise	the	app	
app	=	Flask(__name__)	

#	Define	what	the	app	does	
@app.get("/greet")	
def	index	():
					"""
					TODO	:
				1.	Capture	first	name	&	last	name
				2.	If	either	is	not	provided:	respond	with	an	error
				3.	If	first	name	is	not	provided	and	second	name	is	provided:	
							respond	with	"Hello	Mr.	<second-name>!"
				4.	If	first	name	is	provided	but	second	name	is	not	provided:	
							respond	with	"Hello,	<first-name>!"
				5.	If	both	names	are	provided:	respond	with	a	question,	
							"Is	your	name	<fist-name>	<second-name>
				"""	
			response	=	{	"data"	:	"Hello,	World!"	}	
			return	jsonify(response)

Note	we	have	added	“ 	jsonif	y 	”	module	import	and	change	the	response	to	a
Python	dictionary.	We	then	convert	this	dictionary	to	a	JSON	response	using
jsonify() 	.

Then	close	the	running	instance	of	flask	by	pressing	“ 	Ctrl	+	C 	”	in	the	VSCode
terminal	where	the	flask	is	running.	Then	restart	the	app	by	running	“ 	flask	ru	n 	”.

Now,	if	you	go	back	to	your	Windows	/	macOS	/	Linux	terminal,	and	rerun	the
following	command

curl	-i	-X	GET	"http://127.0.0.1:5000/"

Now	you	see	a	JSONified	response	as	described	below:

HTTP/	1.0	200	OK	
Content-Type:	application/json	
Content-Length:	25	
Server:	Werkzeug/	2.0.1	Python/	3.9.4	
Date:	Sat,	22	May	2021	11	:	46	:	39	GMT	

{	"data"	:	"Hello,	World!"	}

Chapter	4:	Building	interactive	APIs
Now	let’s	use	what	we	learnt	in	the	last	chapter	and	build	on	top	of	it	to	make	it
interactive.

What	we	want	to	do	is,	we	will	send	a	get	request	with	a	name	(Jason)	as	a
parameter,	and	the	API	will	respond	back	with	“ 	Hello,	<name>	! 	”.

4.1	Capturing	request	arguments
To	do	this,	let’s	change	our	app.p	y 	to	the	below:

app.py
#hello-api-python-flask/app.py	
from	flask	import	Flask,	jsonify,	request	

#	Initialise	the	app	
app	=	Flask(__name__)	

#	Define	what	the	app	does	
@app.get("/greet")	
def	index	():
					"""
					TODO	:
				1.	Capture	first	name	&	last	name
				2.	If	either	is	not	provided:	respond	with	an	error
				3.	If	first	name	is	not	provided	and	second	name	is	provided:	
							respond	with	"Hello	Mr.	<second-name>!"
				4.	If	first	name	is	provided	but	second	name	is	not	provided:	
							respond	with	"Hello,	<first-name>!"
				5.	If	both	names	are	provided:	respond	with	a	question,	
							"Is	your	name	<fist-name>	<second-name>
				"""	
			name	=	request.args.get("name")	
			response	=	{	"data"	:	f"Hello,	{name}	!"	}	
			return	jsonify(response)

4.2	Explanation
We	have	added	a	new	command	to	our	program

name	=	request.args.get("name")

This	uses	Flask's	plugin	request	to	capture	the	arguments	that	are	passed	as	part
of	the	querystring.

4.3	Testing	the	API
Now	restart	the	Flask	app,	and	run	the	below	command	from	terminal

curl	-X	GET	"http://127.0.0.1:5000/greet?name=Jason"

You	should	get	the	below

{	"data"	:	"Hello,	Jason!"	}

As	you	can	see,

1.					We	dropped	“	-i	” 	which	is	used	to	ask	for	headers	in	response,	thus	we	did	not	get	headers.
2.					The	request.arg.get() 	method	parsed	the	GET	request	and	isolated	the	name	and	the	value	of	the

argument	from	the	querystring	“ 	greet?name=Jaso	n 	”

3.					Then	we	created	a	response	template	to	include	the	name
4.					And	finally,	JSONified	our	response	back

4.4	Catching	sneaky	behaviour	and	errors
What	happens	if	you	send	incorrect	arguments?	Let's	try	this,	instead	of	“ 	nam	e 	”,
we	change	the	argument	to	“ 	fnam	e 	”.

curl	-X	GET	"http://127.0.0.1:5000/greet?fname=Jason"

You	should	get	the	response

{	"data"	:	"Hello,	None!"	}

This	looks	harmless,	but	just	looking	at	this	particular	response	an	experienced
programmer	will	guess	your	code,	i.e.

1.					You	are	capturing	only	“name”	and	not	any	other	parameter
2.					You	are	constructing	a	response	by	using	fstrings

4.4.1	Why	is	this	bad?

4.4	Handling	incorrect	API	requests
We	want	to	ensure	a	proper	response	is	provided	only	if	the	API	request	has	the
correct	parameters,	otherwise	an	error	will	be	shown.

To	do	this,	we	need	to	add	conditional	logic	to	ensure	“name”	argument	is	being
passed	if	not	we	just	send	an	error	response.	Change	the	app.py	to	the	below

app.py
#hello-api-python-flask/app.py	
from	flask	import	Flask,	jsonify,	request	

#	Initialise	the	app	
app	=	Flask(__name__)	

#	Define	what	the	app	does	
@app.get("/greet")	
def	index	():
					"""
					TODO	:
				1.	Capture	first	name	&	last	name
				2.	If	either	is	not	provided:	respond	with	an	error
				3.	If	first	name	is	not	provided	and	second	name	is	provided:	
							respond	with	"Hello	Mr.	<second-name>!"

				4.	If	first	name	is	provided	but	second	name	is	not	provided:	
							respond	with	"Hello,	<first-name>!"
				5.	If	both	names	are	provided:	respond	with	a	question,	
							"Is	your	name	<fist-name>	<second-name>
				"""	
			name	=	request.args.get("name")	
			if	not	name:	
							return	jsonify({	"status"	:	"error"	})

			response	=	{	"data"	:	f"Hello,	{name}	!"	}	
			return	jsonify(response)

We	added	another	code	block	in	this	version	that	does	two	things

1.					Validates	if	a	name	argument	has	been	provided	as	part	of	the	querystring
2.					If	not,	then	it	returns	an	error

Now	let's	try	to	test	the	API	again

curl	-X	GET	"http://127.0.0.1:5000/greet?fname=Jason"

As	expected,	you	will	get	an	error	message	as	below:

{	"status"	:	"error"	}

Brilliant!	You	are	now	ensuring	people	will	not	randomly	try	different	keywords
and	attempts	to	send	incorrect	requests	are	dealt	with	appropriately.

Our	error	message	is	not	very	descriptive	and	that	is	intentional.	Depending
upon	the	consumers	of	the	API	the	error	messages	can	range	from	prescriptive	to
generic	as	in	above.	It	depends	on	what	the	API	is.

E.g.	for	someone	trying	to	authenticate	to	a	bank,	the	bank	wouldn’t	want	to	give
too	many	details	about	why	the	authentication	failed.	However,	if	I	was	a
stockbroker	developing	APIs	for	my	users,	I’d	want	to	tell	them	why	their	order
was	rejected.

Chapter	5:	Multi-argument	interactive
API
What	if	we	wanted	the	program	to	greet	us	with	either	our	first	name	or	our	last
name	or	both,	depending	upon	what	we	send	in	the	querystring?

Consider	the	scenario	where	if	Jason	call	the	API	with	his

1.					First	name	only,	the	API	responds	with	“ 	Hello,	Jason	! 	”,	indicating	familiarity
2.					Last	name	only,	the	API	responds	with	a	respectful	“ 	Hello,	Mr.	Statham	! 	”

3.					Both	first	and	last	name,	the	API	responds	with	an	annoyed	“ 	Is	your	name	Jason	Statham	? 	”

5.1	Capturing	multiple	arguments
Let’s	try	to	introduce	that	into	our	app.p	y 	by	updating	it	to	the	below.	It	is	as
simple	as	adding	another	request.args.get() 	and	searching	for	the	name	of	the
arguments.

app.py
#hello-api-python-flask/app.py	
from	flask	import	Flask,	jsonify,	request	

#	Initialise	the	app	
app	=	Flask(__name__)	

#	Define	what	the	app	does	
@app.get("/greet")	
def	index	():
					"""
					TODO	:
				1.	Capture	first	name	&	last	name
				2.	If	either	is	not	provided:	respond	with	an	error
				3.	If	first	name	is	not	provided	and	second	name	is	provided:	
							respond	with	"Hello	Mr.	<second-name>!"
				4.	If	first	name	is	provided	but	second	name	is	not	provided:	
							respond	with	"Hello,	<first-name>!"
				5.	If	both	names	are	provided:	respond	with	a	question,	
							"Is	your	name	<fist-name>	<second-name>
				"""	

			fname	=	request.args.get("fname")	
			lname	=	request.args.get("lname")	

			if	not	fname	and	not	lname:	
							#	If	both	first	name	and	last	name	are	missing,	return	an	error	
							return	jsonify({	"status"	:	"error"	})	
			elif	fname	and	not	lname:	
							#	If	first	name	is	present	but	last	name	is	missing	
							response	=	{	"data"	:	f"Hello,	{fname}	!"	}	
			elif	not	fname	and	lname:	
							#	If	first	name	is	missing	but	last	name	is	present	
							response	=	{	"data"	:	f"Hello,	Mr.	{lname}	!"	}	
			else	:	
							#	if	none	of	the	above	is	true,	then	both	names	must	be	present	
							response	=	{	"data"	:	f"Is	your	name	{fname}	{lname}	?"	}	

			return	jsonify(response)

5.2	Explanation
We	first	captured	two	arguments	from	the	get	request,	fname	and	lname,
representing	first	name	and	last	name	using	this	snippet

fname	=	request.args.get("fname")	
lname	=	request.args.get("lname")

Then	we	implemented	our	workflow	using	the	following	conditional	logic

1.					If	either	is	not	provided:	respond	with	an	error
2.					If	the	first	name	is	not	provided	and	the	second	name	is	provided:	respond	with	" 	Hello	Mr

<second-name>	! 	"

3.					If	the	first	name	is	provided	by	the	second	name	is	not	provided:	respond	with	" 	Hello,	<first-
name>	! 	"

4.					If	both	names	are	provided:	respond	with	a	question,	" 	Is	your	name	<first-name>	<second-name
> 	”

if	not	fname	and	not	lname:	
			#	If	both	first	name	and	last	name	are	missing,	return	an
			return	jsonify({	"status"	:	"error"	})	
elif	fname	and	not	lname:	
			#	If	first	name	is	present	but	last	name	is	missing	
			response	=	{	"data"	:	f"Hello,	{fname}	!"	}	

elif	not	fname	and	lname:	
			#	If	first	name	is	missing	but	last	name	is	present	
			response	=	{	"data"	:	f"Hello,	Mr.	{lname}	!"	}	
else	:	
			#	if	none	of	the	above	is	true,	then	both	names	must	be	present	
			response	=	{	"data"	:	f"Is	your	name	{fname}	{lname}	?"	}

Finally,	we	jsonif	y 	our	response	and	return	it	to	the	requestor.

5.3	Testing	the	API
Now	restart	the	flask	app	and	try	all	the	three	scenarios.

a.	Try	with	first	name	only
curl	-i	-X	GET	"http://127.0.0.1:5000/greet?fname=Jason"

b.	Try	with	last	name	only
curl	-i	-X	GET	"http://127.0.0.1:5000/greet?lname=Statham"

c.	Try	with	both	first	name	and	last	name
curl	-i	-X	GET	"http://127.0.0.1:5000/greet?fname=Jason&lname=Statham"

Awesome!	Now	you	have	created	an	interactive	multi-argument	API.

Note:	The	solution	is	also	available	for	viewing	on	the	GitHub	repository	on	a	branch	named	“solution”.

5.4	Reader	Challenge
Read	the	documentation	of			Flask	and	build	a	front-end	for	this	API	.	You	can
find	the	documentation	here:

https://flask.palletsprojects.com/en/2.0.x/

https://flask.palletsprojects.com/en/2.0.x/
https://flask.palletsprojects.com/en/2.0.x/

Chapter	6.	Google	search	as	an	API
You've	gotten	through	here	and	that's	a	fantastic	achievement.	Now,	let's	have
some	fun!

So,	you’ve	learnt	everything	that	you	need	to	learn	about	APIs	and	are	a	master
who	has	ambitions	to	build	the	next	Google.	But	you’re	also	too	lazy	to	build	it
from	scratch.

How	do	you	build	your	own	Lo-Fi	Google	?

How	can	we	get	VC	funding	for	this?

6.1	An	informal	introduction	to	URL	and	Querystring
URLs	(Uniform	Resource	Locator)	are	better	known	as	web	address	or	website
address.		So,	something	like		“	https://www.google.com	”,	“	https://CloudBytes.dev/books	”,
or	“	https://example.com/over/there?name=ferret	”	is	an	example	of	a	URL.

A	typical	URL	will	contain:

1.					Protocol	:		Typically,	htt	p 	or	https
2.					Domain	name	:	google.com	or	CloudBytes.dev	,	are	examples	of	domain	name
3.					File	name	:	E.	g 	.	index.ph	p 	or	books.htm	l 	,	etc.
4.					Querystring	“ 	there?name=ferre	t 	”	or	" 	greet?name=Jaso	n 	"	are	examples

6.2	What	can	we	do	with	this	information?

https://www.google.com
https://CloudBytes.dev/books
https://example.com/over/there?name=ferret

Let’s	try	to	Google	the	term	“	cat	memes	”	and	look	at	the	address	bar	in	the
browser.	The	address	of	the	search	results	page	should	resemble	something	like
the	below

https://www.google.com/search?q=cat+memes&...

Google	searches	words	by	sending	GET	requests	to	it’s	the	URL	with	the	term	that
is	being	searched	as	a	querystring	parameter.	So,	does	that	mean	it	is	an	API	.
Technically,	no,	but	that	doesn’t	mean	we	can’t	treat	it	like	an	API	and	do	funky
stuff	with	it.

So,	let’s	start	by	changing	the	branch	to	the	starter	kit	for	this	exercise.

git	checkout	p2-byog-flask

Then	use	the	instructions	provided	previously	under	the	section	"	Initialise	the
development	environment	"		to

1.					Initialise	a	Python	virtual	environment,
2.					Activate	the	virtual	environment	and
3.					Install	the	dependencies.

6.3	Understanding	the	Starter	Kit
Repository	Structure	:	The	cloned	files	from	GitHub	are	organised	as

.	
├──	app.py	
├──	templates	
│			└──	index.html	
├──	static	
│			└──	logo.png	
│			└──	styles.css	
└──	requirements.txt

Before	getting	into	the	details	of	what	is	included	in	the	individual	files,	let's
understand	the	different	folders	and	their	use.

1.					templates	:	Flask	application	looks	for	HTML	pages	that	will	be	displayed	in
the	browser	in	this	folder	by	default

2.					static	:	Is	used	to	keep	any	static	files	that	are	used	in	the	templates.	This
includes	images,	logos,	JavaScript	files,	and	CSS	Stylesheets

app.py

Contains	the	template	for	our	program,	the	contents	of	which	are

#byog-python-flask/app.py	
from	flask	import	Flask,	request,	render_template,	redirect	

app	=	Flask(__name__)	

@app.get("/")	
def	index	():	
			"""	
			TODO:	Render	the	home	page	provided	under	templates/index.html	in	the	repository	
			"""	
			return	"TODO"	

@app.get("/search")	
def	search	():	
			"""	
			TODO:	
			1.	Capture	the	word	that	is	being	searched	
			2.	Search	for	the	word	on	Google	and	display	results	
			"""	
			return	"TODO"	

if	__name__	==	"__main__"	:	
			app.run()

templates/index.html
This	template	page	is	designed	to	look	like	a	Google	homepage.	We	will	use
Flask's	inbuilt	method	render_template() 	to	render	this	website.	We	don't	need	to
make	any	changes	to	this	HTML	code.

<!--	#byog-python-flask/templates/index.html	-->	
<!DOCTYPE	html>	
<	html	lang	=	"en"	>	

<	head	>	
			<	meta	charset	=	"UTF-8"	>	
			<	meta	http-equiv	=	"X-UA-Compatible"	content	=	"IE=edge"	>	
			<	meta	name	=	"viewport"	content	=	"width=device-width,	initial-scale=1.0"	>	
			<	link	rel	=	"shortcut	icon"	href	=
"https://www.google.com/images/branding/googleg/1x/googleg_standard_color_128dp.png"	
							type	=	"image/x-icon"	>	
			<	title	>Goggle</	title	>	
			<	link	rel	=	"stylesheet"	href	=
"https://stackpath.bootstrapcdn.com/bootstrap/4.5.0/css/bootstrap.min.css"	>	
			<	link	rel	=	"stylesheet"	href	=	"static/styles.css"	>	
</	head	>	

<	body	>	

			<	div	class	=	"main-wrapper"	>	
							<	div	class	=	"logo-container"	>	
											<	img	src	=	"static/logo.png"	alt	=	"Lazy	man's	Google"	>	
							</	div	>	
							<	div	class	=	"search-bar"	>	
											<	form	action	=	"/search"	method	=	"get"	>	
															<	input	type	=	"search"	name	=	"q"	autocomplete	=	"false"	autofocus	>	
															<	button	type	=	"submit"	>Goggle	Search</	button	>	
															<	button	type	=	"submit"	>I'm	Feeling	Lucky</	button	>	
											</	form	>	
							</	div	>	
			</	div	>	
</	body	>	

</	html	>

static/logo.png
It	is	the	logo	for	our	search	engine,	named	"	Goggle	",	you	can	use	any	other	logo.

static/style.css
Contains	the	styling	for	our	HTML	page.	No	changes	are	required	for	the	CSS
Stylesheet	as	well.

/*	#byog-python-flask/static/style.css	*/	
byog-python-flask	/	app	.py	
.logo-container			>	img	{	
			max-height	:	80%	;	
			max-width	:	80%	;	
			margin	:	auto;	
			text-align	:	-webkit-center;	
			margin-top	:	47px	;	
}	

.search-bar	>	form	>	input	{	
			display	:	flex;	
			width	:	100%	;	
			height	:	44px	;	
			border-radius	:	24px	;	
			border	:	1px	solid	#dfe1e5	;	
			margin	:	0	auto;	
			max-width	:	482px	;	
			margin-bottom	:	1em	;	

}	

.main-wrapper	{	
			justify-content	:	center;	
			align-items	:	center;	
			margin	:	auto;	

			display	:	inline-block;	
			text-align	:	center;	
			margin	:	2%	25%	0%	25%	;	
}	

body	{	
			background-color	:	#f6f6f6	;	
			font-family	:	Arial,	sans-serif;	
			font-size	:	small;	
			margin	:	0	;	
			padding	:	0	;	
			min-height	:	80%	;	
			position	:	relative;	
}	

button	{	
			margin	:	1em	1em	1em	1em	;	
			background-image	:	-webkit-linear-gradient	(top,#f5f5f563,#f1f1f1);	
			background-color	:	#f2f2f200	;	
			border-radius	:	16px	;	
			line-height	:	27px	;	
			height	:	36px	;	
			min-width	:	54px	;	
			text-align	:	center;	
			cursor	:	pointer;	
			color	:	#5F6368	;	
}	

button	:hover	{	
			box-shadow	:	0	1px	6px	rgba	(0,	0,	0,	1);	
			background-image	:	-webkit-linear-gradient	(top,#f8f8f8,#f1f1f1);	
			background-color	:	#f8f8f8	;	
			border	:	1px	solid	#c6c6c6	;	
			color	:	#222	;	
			border-radius	:	16px	;	
}

6.4	Logic	of	the	application
For	simplicity,	a	basic	html	with	a	form	is	already	provided	in	“ 	index.htm	l 	”,
however,	you	are	free	to	go	crazy	and	learn	from	UI	development	skills	by	trying
to	copy	the	google	page.

Our	objective	is	to	provide	a	search	box	to	the	“	Gogglers*	”,	who	when	entered	a
set	of	words,	is	redirected	to	Google.com	(because	we’re	lazy)	and	shown	the
results	for	the	search.

This	will	work	following	the	below	pseudocode

1.	Render	the	homepage	with	a	search	box	and	submit	button	
2.	User	submission	is	sent	to	API	as	a	GET	request	
3.	The	API	backend	captures	the	GET	request	and	parses	the	query	
4.	The	API	then	redirects	to	Google	with	appropriate	querystring	to	search	for	.

6.5	Rendering	home	page
To	render	the	home	page,	we	need	to	modify	the	route	logic	for	home,	i.e.	" 	/ 	".
We	do	that	by	changing	app.p	y 	and	updating	the	index() 	method	as	per	below.

app.py
#byog-python-flask/app.py	
from	flask	import	Flask,	request,	render_template,	redirect	

app	=	Flask(__name__)	

@app.get("/")	
def	index	():	
#	Render	the	index.html	template	and	return	it	
			return	render_template("index.html")	

@app.get("/search")	
def	search	():	
"""	
TODO:	
1.	Capture	the	word	that	is	being	searched	
2.	Search	for	the	word	on	Google	and	display	results	
"""	
			return	"TODO"	

if	__name__	==	"__main__"	:	
			app.run()

We	used	the	render_template() 	method	to	render	the	" 	index.htm	l 	"	page	and	then
returned	it	to	the	requestor.

6.5.1	Returning	an	HTML	page
An	appropriate	route	for	the	homepage,	i.e.	“ 	/ 	”	is	defined	along	with	the	handler
function	named	index().

By	using	render_template() 	method,	we	will	return	the	rendered	HTML	page	based	on
the	“ 	index.htm	l 	”	file	that	is	available	in	the	templates	folder.

Now	if	you	start	the	flask	app	by	running	“ 	flask	ru	n 	”	and	navigate	to	the	URL	(
http://127.0.0.1/)	in	the	browser,	you	will	see		your	own	Google	page	with	two

http://127.0.0.1/

buttons,	“ 	Goggle	Searc	h 	”	and	“ 	I’m	Feeling	Luck	y 	”.

If	you	press	any	of	these	buttons	you	will	encounter	an	Error	404	Not	Foun	d 	.

6.5.2	Why	are	we	getting	a	404	error?
To	answer	this	question,	you	need	to	look	at	this	declaration	in	the	template/index.htm
l 	file	that	defines	the	form	containing	the	two	buttons.

<	form	action	=	"/search"	method	=	"get"	>	
			<	input	type	=	"search"	name	=	"search"	id	=	"search"	>	
			<	button	type	=	"submit"	>Goggle	Search</	button	>	
			<	button	type	=	"submit"	>I'm	Feeling	Lucky</	button	>	
</	form	>

As	seen	above,	there	is	an	action	defined	to	the	route	“ 	/searc	h 	”,	but	in	our
program	app.p	y 	,	we	did	haven’t	yet	defined	the	“ 	/searc	h 	”	route	yet,	thus	when	the
browser	sends	a	GET	request	to	the	API	,	it	sends	a	404	Not	Foun	d 	error	since	the
route	doesn’t	exist	.

6.6	Returning	Search	Results
As	per	our	pseudocode,	pressing	the	buttons	should	send	a	GET	request,	which	it
is,	now	we	need	to	listen	to	it,	and	parse	the	request.	We	do	that	in	the	following
manner:

app.py
#byog-python-flask/app.py	
from	flask	import	Flask,	request,	render_template,	redirect	

app	=	Flask(__name__)	

@app.get("/")	
def	index	():	
			return	render_template("index.html")	

@app.get("/search")	
def	search	():	
			args	=	request.args.get("q")	
			return	redirect(f"https://google.com/search?q=	{args}	")	

if	__name__	==	"__main__"	:	
			app.run()

6.7	Explanation
a)	Import	the	redirect() 	method	from	“ 	flas	k 	”	library	to	enable	us	to	redirect	to
another	URL

from	flask	import	Flask,	request,	render_template,	redirect

b)	Define	the	login	of	the	route	“ 	/searc	h 	”,	that	will	be	used	to	listen	and	respond
to	GET	requests

@app.get("/search")	
def	search	():	
			args	=	request.args.get("q")	
			return	redirect(f"https://google.com/search?q=	{args}	")

The	above	method

1.					Parses	the	argument	" 	q 	",	from	the	incoming	GET	request	querystring
2.					Then	redirects	to	the	Google	website	with	the	querystring	of	Google	search	and	adding	the	argument

Now	restart	your	Flask	application	and	open	it	in	your	browser.	Type	something
in	the	search	bar	and	press	“ 	Goggle	Searc	h 	”	,	this	will	take	you	to	the	Google
website	with	the	terms	you	had	searched	for.
So	now	you	have	your	own	awesome	personal	Google.

6.8	Student	Challenge
Implement	the	“ 	I’m	Feeling	Luck	y 	”	button.

Chapter	7:	Building	a	Dictionary	API
For	this	exercise	we	will	build	an	API	that	will	act	as	dictionary	for	English
language,	the	endpoint	that	we	will	define	will	have	the	following	features:

1.					Respond	with	an	exact	match	for	a	word	when	requested
2.					Respond	with	approximate	matches	for	a	word	when	no	match	is	found
3.					Respond	to	list	of	words	and	not	just	a	single	word

We	will	also	organise	our	code	as	per	professional	standards	making	use	of	MVC
concepts.

So,	let's	begin	by	checking	out	the	starter	kit	for	this	exercise

git	checkout	p3-dictionary-api-flask

Then	use	the	instructions	provided	previously	under	the	section	"	Initialise	the
development	environment	"		to

1.					Initialise	a	Python	virtual	environment,
2.					Activate	the	virtual	environment	and
3.					Install	the	dependencies.

Remember,	each	project	has	its	own	dependencies	and	a	separate	virtual
environment	needs	to	be	created.

7.1	Understanding	the	Starter	Kit
Repository	Structure	:	The	cloned	repository	includes	the	following

.	
├──	app.py	
├──	data	
│			└──	dictionary.db	
├──	model	
│			└──	dbHandler.py	
└──	requirements.txt

app.py
Contains	the	template	for	our	program,	the	contents	of	which	are

#dictionary-api-python-flask/app.py	
from	flask	import	Flask,	request,	jsonify	
from	model.dbHandler	import	match_exact,	match_like	

app	=	Flask(__name__)	

@app.get("/")	
def	index	():	
			"""	
			DEFAULT	ROUTE	
			This	method	will	
			1.	Provide	usage	instructions	formatted	as	JSON	
			"""	
			return	"TODO"	

@app.get("/dict")	
def	dict	():	
"""	
			DEFAULT	ROUTE	
			This	method	will	
			1.	Accept	a	word	from	the	request	
			2.	Try	to	find	an	exact	match	and	return	it	if	found	
			3.	If	not	found,	find	all	approximate	matches	and	return	
			"""	
			return	"TODO"	

if	__name__	==	"__main__"	:	
			app.run()

In	line	#3	We	are	importing	match_exact() 	and	match_like() 	functions	which	are	defined
under	model/dbHandler.p	y 	file.

model/dbHandler.py
Models,	the	V	from	MVC	design	pattern,	are	used	to	model	and	handle	data.
While	MVC	is	a	good	read	and	an	interesting	topic,	but	to	summarise

1.					Model	is	the	central	component	and	that	contains	the	application	logic	and	data	handling.

2.					View	defines	what	the	user	sees	or	the	frontend,	in	the	Goggle	example,	it	will	include	everything
under	templates	and	static	folders.

3.					Controller	manager	user	interaction,	in	our	examples	app.p	y 	is		acting	like	a	controller	with	its
@app.route() 	invocations.

The	contents	of	our	starter	model	are

#dictionary-api-python-flask/model/dbHandler.py	
import	sqlite3	as	SQL	

def	match_exact	(word:	str)	->	list:	

			"""	
			This	method	will:	
			1.	Accept	a	string	
			2.	Search	the	dictionary	for	an	exact	match	
			3.	If	success	return	the	definition	
			4.	If	not	return	an	empty	list	
			"""	
			return	"TODO"	

def	match_like	(word:	str)	->	list:	
"""	
			This	method	will:	
			1.	Accept	a	string	
			2.	Search	the	dictionary	for	approximate	matches	
			3.	If	success	return	the	definition	as	a	list	
			4.	If	not	return	an	empty	list	
			"""	
			return	"TODO"

data/dictionary.db
This	is	the	database	of	English	words	that	we	are	going	to	use.	It	is	formatted	as
an	SQLite	DB	,	which	is	a	lightweight	relational	DB	engine.	A	good	practice	is	to
keep	all	the	database	in	one	place,	this	has	been	segregated	in	its	folder.

The	schema	of	dictionary.db	is	described	below

Column																		

word														
wordtype									
definition													

Type

varchar(25)
varchar(20)
text

Schema

"word"	varchar(25)	NOT	NULL
"wordtype"	varchar(20)	NOT	NULL	
"definition"	text	NOT	NULL

7.2	Logic	of	the	application
First,	we	need	to	update	the	index() 	method	to	handle	incoming	requests	and
respond	back	with	usage	instructions.	To	do	this	update	the	method	as	per	below

#Update	the	index	method	under	app.py	
@app.get("/")	
def	index	():	
			"""	
			DEFAULT	ROUTE	
			This	method	will	
			1.	Provide	usage	instructions	formatted	as	JSON	
			"""	
			response	=	{	"usage"	:	"/dict?=<word>"	}	
			return	jsonify(response)

A	very	sweet	and	simple	method	that	will	tell	us	what	the	usage	pattern	is.

7.3	Handle	incoming	searches
We	first	need	to	accept	the	word	being	searched	from	the	incoming	request.	As
per	our	feature	specification,	the	app	should	be	able	to	handle	either	a	single
word	or	a	list	of	words	in	the	querystring.

a)	Let’s	first	build	the	logic	to	handle	a	single	word.	We	will	update	our	dictionary()
method	to	capture	a	get	request	and	store	it	using.	As	in	previous	instances,	we
can	do	that	by	using	this	snippet

word	=	request.args.get("word")

b)	Then	we	build	our	usual	sanity	check	to	ensure	a	proper	input	has	been
provided

if	not	word:	
			return	jsonify({	"data"	:	"Not	a	valid	word	or	no	word	provided"	})

Thus,	is	the	incoming	request	doesn't	include	a	parameter	"word"	or	the
querystring	is	malformed,	our	API	will	return	this	error

c)	Now	let’s	call	the	match_exact() 	method	by	passing	the	word	and	capture	the
result	in	a	variable.	After	that	we	will	check	if	the	response	is	an	empty	list
which	would	signify	the	word	doesn’t	exist	in	our	dictionary.	If	an	exact	match	is
found,	we	will	return	a	response	with	the	definition.

definitions	=	match_exact(word)	
if	definition
			return	jsonify({	"data"	:	definition})

d)	If	an	exact	match	is	not	found,	we	search	for	an	approximate	match	using
match_like() 	method	and	return	the	definitions.	If	an	approximate	match	is	not
found	as	well,	an	error	status	is	returned.

definitions	=	match_like(word)	
if	definitions:	
			return	jsonify({	"data"	:	definitions})	
else	:	
			return	jsonify({	"data"	:	"word	not	found"	})

	

app.py

Thus	the	app.p	y 	will	look	like	below

#	dictionary-api-python-flask/app.py	
from	flask	import	Flask,	request,	jsonify	
from	model.dbHandler	import	match_exact,	match_like	

app	=	Flask(__name__)	

@app.get("/")	
def	index	():	
			"""	
			DEFAULT	ROUTE	
			This	method	will	
			1.	Provide	usage	instructions	formatted	as	JSON	
			"""	
			response	=	{	"usage"	:	"/dict?=<word>"	}	
			return	jsonify(response)	

@app.get("/dict")	
def	dictionary	():	
			"""	
			SEARCH	ROUTE	
			This	method	will	
			1.	Accept	a	word	from	the	request	
			2.	Try	to	find	an	exact	match	and	return	it	if	found	
			3.	If	not	found,	find	all	approximate	matches	and	return	
			"""	
			word	=	request.args.get("word")	

			#	Return	an	error	querystring	is	malformed	
			if	not	word:	
							return	jsonify({	"status"	:	"error"	,	"data"	:	"word	not	found"	})	

			#	Try	to	find	an	exact	match	
			definitions	=	match_exact(word)	
			if	definitions:	
							return	jsonify({	"status"	:	"success"	,	"data"	:	definitions})	

			#	Try	to	find	an	approximate	match	
			definitions	=	match_like(word)	
			if	definitions:	
							return	jsonify({	"status"	:	"partial"	,	"data"	:	definitions})	
			else	:	
							return	jsonify({	"status"	:	"error"	,	"data"	:	"word	not	found"	})	

if	__name__	==	"__main__"	:	
			app.run()

7.3.1	Testing	our	changes

Home	Route	:	Let's	do	a	quick	test	of	our	app	so	far,	open	terminal	and	run

curl	-X	GET	http://	127.0.0.1	:	5000	/

This	should	produce

{	"usage"	:	"/dict?=<word>"	}

Dictionary	Route	:	Similarly	let's	test	the	dictionary	route.

curl	-X	GET	http://	127.0.0.1	:	5000	/dict?word=data

The	response	should	be

{	"data"	:	"TODO"	,	"status"	:	"success"	,	"word"	:	"data"	}

The	output	is	not	correct	because	we	haven't	implemented	our	models	yet.

7.4	Finding	the	definition	of	the	word
We	need	to	use	Python’s	sqlite3	library	to	interact	with	the	database	and	extract
the	matches.

First,	we	will	find	all	exact	matches	to	the	provided	word	by

1.					Establish	connection	to	the	dictionary
2.					Query	the	database	for	exact	matches
3.					Close	the	connection	to	the	database
4.					Return	the	response

We	do	that	by	updating	the	method	match_exact() 	to	the	following

def	match_exact	(word:	str)	->	list:	
			"""	
			This	method	will:	
			1.	Accept	a	string	
			2.	Search	the	dictionary	for	an	exact	match	
			3.	If	success	return	the	definition	
			4.	If	not	return	an	empty	list	
			"""	
			#	Establish	connection	to	the	dictionary	database	
			db	=	SQL.connect("data/dictionary.db")	
			
			#	Query	the	database	for	exact	matches	
			sql_query	=	"SELECT	*	from	entries	WHERE	word=?"	
			match	=	db.execute(sql_query,	(word,)).fetchall()	
			

			#	Clone	the	connection	to	the	database	
			db.close()	
			
			#	Return	the	results	
			return	match

Next,	we	need	to	follow	similar	steps	but	find	and	return	all	approximate
matches.	We	do	that	by	updating	match_like() 	method	to

def	match_like	(word:	str)	->	list:	
			"""	
			This	method	will:	
			1.	Accept	a	string	
			2.	Search	the	dictionary	for	approximate	matches	
			3.	If	success	return	the	definition	as	a	list	
			4.	If	not	return	an	empty	list	
			"""	
			#	Establish	connection	to	the	dictionary	database	
			db	=	SQL.connect("data/dictionary.db")	

			#	Query	the	database	for	exact	matches	
			sql_query	=	"SELECT	*	from	entries	WHERE	word	LIKE	?"	
			match	=	db.execute(sql_query,	("%"	+	word	+	"%"	,)).fetchall()	

			#	Clone	the	connection	to	the	database	
			db.close()	
			#	Return	the	results	
			return	match

	

model/dbHandler.py
The	final	model	now	includes	both	completed	methods,	match_exact() 	and	match_like(
and	looks	like	the	below

#	dictionary-api-python-flask/models/dbHandler.py	
import	sqlite3	as	SQL	

def	match_exact	(word:	str)	->	list:	
			"""	
			This	method	will:	
			1.	Accept	a	string	
			2.	Search	the	dictionary	for	an	exact	match	
			3.	If	success	return	the	definition	
			4.	If	not	return	an	empty	list	
			"""	
			#	Establish	connection	to	the	dictionary	database	
			db	=	SQL.connect("data/dictionary.db")	
			sql_query	=	"SELECT	*	from	entries	WHERE	word=?"	

			#	Query	the	database	for	exact	matches	
			match	=	db.execute(sql_query,	(word,)).fetchall()	
			#	Clone	the	connection	to	the	database	
			db.close()	

			#	Return	the	results	
			return	match	
	

def	match_like	(word:	str)	->	list:	
			"""	
			This	method	will:	
			1.	Accept	a	string	
			2.	Search	the	dictionary	for	approximate	matches	
			3.	If	success	return	the	definition	as	a	list	
			4.	If	not	return	an	empty	list	
			"""	
			#	Establish	connection	to	the	dictionary	database	
			db	=	SQL.connect("data/dictionary.db")	

			#	Query	the	database	for	exact	matches	
			sql_query	=	"SELECT	*	from	entries	WHERE	word	LIKE	?"	
			match	=	db.execute(sql_query,	("%"	+	word	+	"%"	,)).fetchall()	

			#	Clone	the	connection	to	the	database	
			db.close()	
			#	Return	the	results	
			return	match

7.4.1	Testing	our	changes
To	test	restart	Flask	and	run	the	following	in	Terminal

curl	-X	GET	http://	127.0	.	0.1	:	5000	/dict?word=	data

Our	API	server	will	look	at	the	query	string,	parse	the	word	parameter	as	“ 	tes	t 	”
and	search	for	exact	matches.	This	will	produce	a	JSON	that	is	composed	of	a	list
of	lists	under	the	key	“ 	dat	a 	”	and	“ 	statu	s 	”	as	“ 	succes	s 	”.

{	
			"data"	:[
							["data"	,	"n.	pl."	,	"See	Datum."],	
							["data"	,	"pl.	"	,	"of	Datum"]	
],	
			"status"	:	"success"	,	
			"word"	:	"data"	
}

Note	the	" 	dat	a 	"	in	the	above	is	a	list	of	lists.	This	is	because	one	word	can	have

multiple	meanings	and	the	dictionary	API	will	rightly	respond	with	a	list	where
there	are	multiple	meanings.

Similarly,	let's	search	for	the	approximate	matches	as	well	by	running

curl	-X	GET	http://	127.0.0.1	:	5000	/dict?word=datar

The	server	will	look	for	a	word,	“ 	data	r 	”	in	the	dictionary,	and	when	it	is	not
found,	it	will	try	to	find	similar	matches.		This	will	produce	a	JSON	that	is
composed	of	a	list	of	lists	under	the	key	“ 	dat	a 	”	and	“ 	statu	s 	”	as	“ 	partia	l 	”.

{	
			"data"	:[
							["commendatary"	,	"n."	,	"One	who	holds	a	living	in	commendam."],	
							["dataria"	,	"n."	,	"Formerly,	a	part	of	the	Roman	chancery;	now,	a	separate\n			office	from	which
are	sent	graces	or	favors,	cognizable	in	foro\n			externo,	such	as	appointments	to	benefices.	The	name
is	derived	from\n			the	word	datum,	given	or	dated	(with	the	indications	of	the	time	and\n			place	of
granting	the	gift	or	favor)."],	
							["datary"	,	"n."	,	"An	officer	in	the	pope's	court,	having	charge	of	the\n			Dataria."],	
							["datary"	,	"n."	,	"The	office	or	employment	of	a	datary."],	
							["mandatary"	,	"n."	,	"One	to	whom	a	command	or	charge	is	given;	hence,\n			specifically,	a	person
to	whom	the	pope	has,	by	his	prerogative,	given\n			a	mandate	or	order	for	his	benefice."],	
							["mandatary"	,	"n."	,	"One	who	undertakes	to	discharge	a	specific	business\n			commission;	a
mandatory."]	
],	
			"status"	:	"partial"	,	
			"word"	:	"datar"	
}

Congratulations!	The	first	step	of	our	API	is	ready.

7.5	Handling	list	of	words
While	our	app	is	working	fine,	but	if	we	try	to	send	multiple	words	together
using	a	command	like	below,

curl	-X	GET	"http://127.0.0.1:5000/?word=data&word=datar"

It	will	respond	with	only	the	definition	of	“ 	dat	a 	”	because	our	API	doesn’t	have	a
mechanism	to	accept	multiple	parameters.	Hence,	we	need	to	modify	our	app	to
look	for	a	list	of	words	provided	as	part	of	the	query	string.

To	solve	this,	there	are	two	options

1.					Use	str.split() 	method	to	split	the	input	string	by	‘,’	into	a	list	of	strings
2.					Use	the	Flask’s	in-built	method,	request.args.getlist()

While	the	first	option	works	and	is	semantically	easier	to	implement,	it	is	not
best-practice.	Use	of	the	second	method	is	recommended	due	to	its	prevalence,
REST	API	standards,	and	browser	implementations.

Hence,	in	the	app.p	y 	,	change	the	line

word	=	request.args.get("word")

to	the	below	using	request.args.getlist() 	method

words	=	request.args.getlist("word")

Now	the	rest	of	the	program	will	need	to	be	changed	to	use	a	loop	for	each
element	in	the	list	using	the	below	algorithm

1.	For	each	word	in	the	list	of	words	
			1.	Search	for	an	exact	match	
			2.	If	an	exact	match	is	found:	append	the	data	in	response	
			3.	If	an	exact	match	is	not	found	
							1.	Search	for	an	approx.	match	
							2.	If	an	approx.	match	is	found:	append	the	data	in	response	
							3.	If	approx.	match	is	not	found:	Add	error	in	the	response	
2.	Return	the	final	response

So,	we	modify	our	app.p	y 	method	dictionary() 	as	per	below

app.py
#	dictionary-api-python-flask/app.py	
from	flask	import	Flask,	request,	jsonify	
from	model.dbHandler	import	match_exact,	match_like	

app	=	Flask(__name__)	

@app.get("/")	
def	index	():	
			"""	
			DEFAULT	ROUTE	
			This	method	will	
			1.	Provide	usage	instructions	formatted	as	JSON	
			"""	
			response	=	{	"usage"	:	"/dict?=<word>"	}	
			return	jsonify(response)	

@app.get("/dict")	
def	dictionary	():	
			"""	
			DEFAULT	ROUTE	

			This	method	will	
			1.	Accept	a	word	from	the	request	
			2.	Try	to	find	an	exact	match	and	return	it	if	found	
			3.	If	not	found,	find	all	approximate	matches	and	return	
			"""	
			words	=	request.args.getlist("word")	

			#	Return	an	error	querystring	is	malformed	
			if	not	words:	
							response	=	{	"status"	:	"error"	,	"word"	:	words,	"data"	:	"word	not	found"	}	
							return	jsonify(response)	

			#	Initialise	the	response	
			response	=	{	"words"	:	[]}	

			for	word	in	words:	
							#	Try	to	find	an	exact	match	
							definitions	=	match_exact(word)	
							if	definitions:	
											response["words"].append({	"status"	:	"success"	,	"word"	:	word,	"data"	:	definitions})	
							else	:	
											#	Try	to	find	an	approximate	match	
											definitions	=	match_like(word)	
											if	definitions:	
															response["words"].append({	"status"	:	"partial"	,	"word"	:	word,	"data"	:	definitions})	
											else	:	
															response[words].append({	"status"	:	"error"	,	"word"	:	word,	"data"	:	"word	not	found"	})	
														
#	Return	the	response	after	processing	all	words				
return	jsonify(response)	

if	__name__	==	"__main__"	:	
			app.run()

7.6	Testing	the	API
We	send	two	words	in	the	GET	request	now	using	Terminal

curl	-X	GET	"http://127.0.0.1:5000/?word=data&word=datar"

And	now	we	should	response	that	includes	a	" 	succes	s 	"	message	for	" 	dat	a 	"	because
it	was	an	exact	match	in	our	dictionary,	and	a	" 	partia	l 	"	status	for	" 	data	r 	"	since	it
got	only	partial	matches.

{	"words"	:[
			{	"data"	:[["data"	,	"n.	pl."	,	"See	Datum."],["data"	,	"pl.	"	,	"of	Datum"]],	
				"status"	:	"success"	,	
				"word"	:	"data"	},	
			{	"data"	:[["commendatary"	,	"n."	,	"One	who	holds	a	living	in	commendam."],["dataria"	,	"n."	,
"Formerly,	a	part	of	the	Roman	chancery;	now,	a	separate\n			office	from	which	are	sent	graces	or

favors,	cognizable	in	foro\n			externo,	such	as	appointments	to	benefices.	The	name	is	derived
from\n			the	word	datum,	given	or	dated	(with	the	indications	of	the	time	and\n			place	of	granting	the
gift	or	favor)."],["datary"	,	"n."	,	"An	officer	in	the	pope's	court,	having	charge	of	the\n			Dataria."],[
"datary"	,	"n."	,	"The	office	or	employment	of	a	datary."],["mandatary"	,	"n."	,	"One	to	whom	a	command
or	charge	is	given;	hence,\n			specifically,	a	person	to	whom	the	pope	has,	by	his	prerogative,
given\n			a	mandate	or	order	for	his	benefice."],["mandatary"	,	"n."	,	"One	who	undertakes	to	discharge
a	specific	business\n			commission;	a	mandatory."]],	
				"status"	:	"partial"	,	
				"word"	:	"datar"	}]}

7.7	Student	Challenge
Build	a	front	end	for	this	program	using	what	you	learnt	in	Goggle	exercise,	it
should	include

1.					A	simple	homepage	with	a	search	box,	submit	button
2.					It	should	be	able	to	search	only	1	word	at	a	time.	You	can	do	a	list	of	words	as	well,	but	that

requires	JavaScript	.

3.					A	page	to	display	the	results	where	the	word	and	match	status	is	highlighted	as	a	header,	and	each
definition	is	shown	as	an	unordered	list	underneath

NOTE:	The	reference	solution	is	available	on	GitHub	Repository	under	the	branch	"	s3-bonus-
dictionary-api-flask	"

7.8	Jupyter	Notebook	to	test	the	API
Jupyter	Notebook	is	a	very	handy	tool	loved	by	almost	anybody	who	uses
Python	regularly.	It	is	an	interactive	browser-based	Python	IDE	that	takes	inputs
in	"cells"	and	outputs	immediately	below	the	cell.

In	the	above	example,	In[1] 	is	the	first	cell	where	a	Python	command	was	entered,
then	executed	by	pressing	" 	Ctrl	+	Ente	r 	"	or	" 	Shift	+	Ente	r 	".	This	immediately
executes	the	command	and	prints	" 	Hello,	Students	! 	"	below	it.

Then	we	stored	a	string	" 	Hello,	Students	! 	"	in	a	variable	message,	to	see	the	contents
of	that	variable,	just	type	the	variable	name	and	press	" 	Ctrl	+	Ente	r 	".	This	displays
the	content	in	Out[2].

While	doing	data	or	other	forms	of	analysis	using	Python	,	Pandas	,	and	NumPy
this	is	a	very	handy	feature	that	allows	the	analyst	to	explore	the	contents	of	data
in	real-time.

Note:	By	default,	the	Jupyter	Notebook	will	use	the	system-wide	Python	installation,	so	you	may	need	to
install	certain	libraries	using	" 	pip3	install	<library-name	> 	"	syntax	in	case	you	get	errors

Let's	use	Jupyter	Notebook	to	test	our	dictionary	API	.	Type	the	below	in	cell	1,

#Jupyter	Notebook/	In[1]	
import	requests

This	will	import	the	Python	library	that	is	used	to	send	cURL	requests,	you	will
not	see	any	output.	Then,	we	will	use	requests.get() 	method	to	fetch	a	response.

#	Jupyter	Notebook/	In[2]	
URL	=	"http://127.0.0.1:5000/"	
response	=	requests.get(URL)	
response.raise_for_status

We	check	the	response	for	status	using	"	raise_for_statu	s 	”,	which	will	tell	us	if	the
response	was	successful.	This	will	output

<	bound	method	Response.raise_for_status	of	<	Response	[200]>>

A	[200]	Statu	s 	means	the	API	request	was	successfully	processed.	To	see	the
contents	of	the	response,	we	need	to	run

#	Jupyter	Notebook/	In[3]	
response.content

This	will	print	out	the	output	for	a	GET	request	at	the	URL			https://127.0.0.1:5000	,
which	in	this	case	is	the	usage	instructions

b'{	"usage"	:	"/dict?word=<word>"	}'

The	" 	b 	"	denotes	that	the	contents	are	encoded	in	binary	but	printed	out	to	the
console.

Why	does	this	matter	?	Because	any	data	in	binary	is	made	of	0's	and	1's	in	a
literal	sense,	and	if	we	wanted	to	just	check	the	value	of	"usage",	we	would	not
be	able	to	do	that.

Thus,	we	need	to

1.					Decode	the	response	into	string	using	" 	utf-	8 	"	specifications
2.					Convert	the	string	into	a	JSON	object

#	Jupyter	Notebook/	In[4]	
import	json	
data	=	response.content.decode("utf-9")	
data	=	json.loads(data)	
data[usage]

This	will	print	out

"/dict?word=<word>"

7.8.1	Searching	the	dictionary	using	Jupyter
Based	on	the	above,	we	need	to	run	the	following

#	Jupyter	Notebook	/	In[1]	
import	requests	
import	json	

URL	=	"http://127.0.0.1:5000/"	
word	=	data	

response	=	request.get(f"	{URL}	dict?word=	{word}	")	

data	=	json.loads(response.content.decode("utf-8"))	
data

This	will	print	out	the	definitions	for	the	word	" 	dat	a 	"

https://127.0.0.1:5000
https://127.0.0.1:5000

Chapter	8:	Building	a	POST	API
We	have	created	a	few	APIs	that	respond	to	the	GET	request.	How	about	we
create	an	API	that	can	handle	POST	requests.	We	will	build	an	API	that	accepts	an
image	via	a	POST	request.	In	this	case,	we	cannot	use	a	GET	request	because	all
the	data	in	the	GET	request	is	part	of	the	"	querystring	"	or	headers,	both	of	which
have	a	maximum	limit.

Once	the	API	accepts	the	image	sent	as	a	payload	in	a	POST	request,	our	app	will
apply	filters	to	it,	and	then	send	it	back	to	the	requestor.

8.1	API	to	add	Filters
In	this	example,	we	are	going	to	learn	to	fork	a	repository	from	GitHub	.	This
will	be	needed	in	the	next	chapter.

a)	To	get	started,	switch	to	the	starter	kit	for	this	exercise	by	running

git	checkout	p4-image-filter-flask

Then	using	instructions	in	previous	chapters,

1.					Create	a	virtual	environment
2.					Activate	the	virtual	environment
3.					Install	the	dependencies
4.					Open	the	folder	in	VSCode

8.2	Understanding	the	Starter	Kit
Repository	Structure	:	The	cloned	files	from	GitHub	are	organised	as

.	
├──	app.py	
├──	bin	
│			└──	filters.py	
├──	requirements.txt	
└──	sample.jpg

	

app.py
from	flask	import	Flask,	request,	send_file,	jsonify	

from	bin.filters	import	apply_filter	

app	=	Flask(__name__)	

filters_available	=	[]	

@app.route("/",	methods=["GET",	"POST"])	
def	index	():	
			"""	
			TODO:	
			1.	Return	the	usage	instructions	that	
			a)	specifies	which	filters	are	available,	
			b)	specifies	and	the	method	format	
			"""	
			pass

@app.post("/<filter>")	
def	image_filter	(filter):	
			"""	
			TODO:	
			1.	Checks	if	the	provided	filter	is	available,	if	not,	return	an	error	
			2.	Check	if	a	file	has	been	provided	in	the	POST	request,	if	not	return	an	error	
			3.	Apply	the	filter	using	apply_filter()	method	from	bin.filters	
			4.	Return	the	filtered	image	as	response	
			"""	
			pass

if	__name__	==	"__main__"	:	
			app.run()

	

bin/filters.py
from	PIL	import	Image,	ImageFilter	
import	io	

def	apply_filter	(file:	object,	filter:	str)	->	object:	
			"""	
			TODO:	
			1.	Accept	the	image	as	file	object,	and	the	filter	type	as	string	
			2.	Open	the	as	an	PIL	Image	object	
			3.	Apply	the	filter	
			4.	Convert	the	PIL	Image	object	to	file	object	
			5.	Return	the	file	object	
			"""	

			pass

	

sample.jpg

It	is	an	image	provided	to	ease	the	testing	of	this	API	.	You	can	use	your	own
images	instead.

8.3	Logic	of	the	application
First,	we	will	define	the	route	for	“ 	/ 	”,	but	unlike	previous	cases	this	route
accepts	requests	using	both	GET	and	POST	methods.	The	index()	method	then
returns	a	response	that	explains

1.					The	filters	that	are	available
2.					Usage	instructions	on	how	to	use	the	filter

8.3.1	Available	Filters
We	are	going	to	use	the		PIL	(Python	Imaging	Library)	to	handle	and	apply
filters.	If	you	read	the			PIL	Documentation	at	https://pillow.readthedocs.io/en/stable	/ 	,	you
can	find	the	filters	that	are	available	out	of	the	box.	We	list	these	in	the
available_filter	s 	in	the	app.p	y 	.

#	Filters	available	in	PIL	
filters_available	=	[
			"blur"	,	
			"contour"	,	
			"detail"	,	
			"edge_enhance"	,	
			"edge_enhance_more"	,	
			"emboss"	,	
			"find_edges"	,	
			"sharpen"	,	
			"smooth"	,	
			"smooth_more"	,	
]

8.3.2	Home	Route
@app.route("/",	methods=["GET",	"POST"])	
def	index	():	
			"""	
			TODO:	
			1.	Return	the	usage	instructions	that	
			a)	specifies	which	filters	are	available,	
			b)	specifies	and	the	method	format	
			"""	
			response	=	{	
							"filters_available"	:	filters_available,	
							"usage"	:	{	"http_method"	:	"POST"	,	"URL"	:	"/<filter_available>/"	},	

https://pillow.readthedocs.io/en/stable/
https://pillow.readthedocs.io/en/stable/

			}	

			return	jsonify(response)

@app.rout	e 	is	used	to	provide	two	HTTP	methods	at	the	same	time,	both	GET	and
POST	.	Then	we	define	the	response	that	contains	the	usage	instructions	and	the
filters	available	and	return	it	to	the	requestor.

8.3.3	Filter	Route
@app.post("/<filter>")	
def	image_filter	(filter):	
			"""	
			TODO:	
			1.	Checks	if	the	provided	filter	is	available,	if	not,	return	an	error	
			2.	Check	if	a	file	has	been	provided	in	the	POST	request,	if	not	return	an	error	
			3.	Apply	the	filter	using	apply_filter()	method	from	bin.filters	
			4.	Return	the	filtered	image	as	response	
			"""	
			if	filter	not	in	filters_available:	
							response	=	{	"error"	:	"incorrect	filter"	}	
							return	jsonify(response)	

			file	=	request.files["image"]	
			if	not	file:	
							response	=	{	"error"	:	"no	file	provided"	}	
							return	jsonify(response)	

			filtered_image	=	apply_filter(file,	filter)	

			return	send_file(filtered_image,	mimetype=	"image/JPEG")

@app.post(“<filter>”) 	is	used	to	post	requests,	but	notice	the	route?

This	route	is	expressed	as	a	parameter,	so	if	the	POST	request	is	sent	to	the
“URL/blur”	using	the	<filter	> 	parameter	will	capture	“ 	blu	r 	”	as	a	variable.	This
occurs	in	the	next	line	where	" 	filte	r 	"	is	the	argument	for	the	image_filter() 	method.

Ensuring	the	provided	filter	is	available

if	filter	not	in	filters_available:	
			response	=	{	"error"	:	"incorrect	filter"	}	
			return	jsonify(response)

The	above	snippet	checks	if	the	provided	“ 	filte	r 	”	is	not	available	in	the	list	of
available	filters,	and	if	it	is	not	available,	it	returns	an	error	message	stating	the
filter	is	incorrect.

Ensuring	a	file	is	provided

file	=	request.files["image"]	
if	not	file:	
			response	=	{	"error"	:	"no	file	provided"	}	
			return	jsonify(response)

A	quick	check	to	see	if	the	request	includes	any	file	with	the	name	“ 	imag	e 	”.	If	the
file	is	not	provided	in	the	POST	request,	it	will	return	an	error	message	stating	the
file	was	not	provided.

If	all	constraints	are	met,	apply	the	filter,	and	return	the	file

filtered_image	=	apply_filter(file,	filter)	
return	send_file(filtered_image,	mimetype=	"image/JPEG")

We	use	the	apply_filter() 	method	and	pass	it	the	file	object	and	filter	string	as
arguments,	and	the	method	returns	a	file	object	with	filter	applied.	We	will
implement	the	logic	for	apply_filter()	in	the	next	section.

Then	we	return	the	filtered	image	using	send_file() 	method	and	specify	the
mimetype	as	“ 	image/JPE	G 	”	so	that	the	requestor	knows	what	kind	of	data	it	has
received.

8.3.4	Combining	all	changes
After	all	these	changes,	our	app.p	y 	looks	like	below

app.py
from	flask	import	Flask,	request,	send_file,	jsonify	
from	bin.filters	import	apply_filter

app	=	Flask(__name__)

filters_available	=	[
			"blur"	,	
			"contour"	,	
			"detail"	,	
			"edge_enhance"	,	
			"edge_enhance_more"	,	
			"emboss"	,	
			"find_edges"	,	
			"sharpen"	,	
			"smooth"	,	
			"smooth_more"	,	
]

@app.route("/",	methods=["GET",	"POST"])	
def	index	():	
			"""	
		TODO:	
		1.	Return	the	usage	instructions	that	
		a)	specifies	which	filters	are	available,	
		b)	specifies	and	the	method	format	
		"""	
			response	=	{	
							"filters_available"	:	filters_available,	
							"usage"	:	{	"http_method"	:	"POST"	,	"URL"	:	"/<filter_available>/"	},	
		}	
			return	jsonify(response)

@app.post("/<filter>")	
def	image_filter	(filter):	
		"""	
		TODO:	
		1.	Checks	if	the	provided	filter	is	available,	if	not,	return	an	error	
		2.	Check	if	a	file	has	been	provided	in	the	POST	request,	if	not	return	an	error	
		3.	Apply	the	filter	using	apply_filter()	method	from	bin.filters	
		4.	Return	the	filtered	image	as	response	
		"""	
			if	filter	not	in	filters_available:	
							response	=	{	"error"	:	"incorrect	filter"	}	
							return	jsonify(response)

			file	=	request.files["image"]	
			if	not	file:	
							response	=	{	"error"	:	"no	file	provided"	}	
							return	jsonify(response)

			filtered_image	=	apply_filter(file,	filter)

			return	send_file(filtered_image,	mimetype=	"image/JPEG")

if	__name__	==	"__main__"	:	
			app.run()

But	our	app	is	not	ready	yet.	The	apply_filter() 	method	stills	needs	to	be	completed

8.4	Implementing	the	Filter
So	now	that	we	have	passed	the	image	to	the	apply_filter() 	method,	we	need	to
implement	the	logic	for	it.

bin/filters.py
from	PIL	import	Image,	ImageFilter	
import	io

def	apply_filter	(file:	object,	filter:	str)	->	object:	
			"""	
			TODO:	
			1.	Accept	the	image	as	file	object,	and	the	filter	type	as	string	
			2.	Open	the	as	an	PIL	Image	object	
			3.	Apply	the	filter	
			4.	Convert	the	PIL	Image	object	to	file	object	
			5.	Return	the	file	object	
			"""	
			image	=	Image.open(file)	
			image	=	image.filter(eval(f"ImageFilter.	{filter.upper()}	"))	

			file	=	io.BytesIO()	
			image.save(file,	"JPEG")	
			file.seek(0)	

			return	file

8.4.1	Explanation
From	the	PIL	(Python	Imaging	Library)	we	have	imported	two	methods,	Image(
&	ImageFilter.

Image() 	is	used	to	store	the	image	data,	while	ImageFilter	is	used	to	apply	the	pre-
configured	filter	transformations.

To	implement	the	apply_filter() 	method,	which	takes	two	arguments

a.	fil	e 	:	The	image	that	was	received	as	a	file	object	
b.	filte	r 	:	The	filter	that	will	be	applied	as	a	string

We	first	open	the	image	as	a	PIL	object	by

image	=	Image.open(file)

Once	the	file	is	opened	as	a	PIL	Image,	we	can	apply	a	filter	such	as	“ 	blu	r 	”	using
the	below	command:

image	=	image.filter(ImageFilter.BLUR)

Using	the	above	syntax,	we	can	create	filters	for	other	filters	as	well,	but	that
would	mean	we	have	to	create	a	very	long	if-else	logic,	one	if	clause	for	each
filter.

Instead	we’re	going	to	use	a	python	method	called	eval() 	to	convert	a	string	to	a
python	function	call

image	=	image.filter(eval(f"ImageFilter.	{filter.upper()}	"))

Here,	we	converted	the	variable	filter	to	uppercase,	then	appended	the	filter	to	“
ImageFilte	r 	.”	Finally,	we	convert	that	to	a	valid	Python	code	using	the	“ 	eval() 	“
method,	which	converts	a	string	to	a	Python	command	for	execution.

Now,	our	filter	is	applied	but	we	need	to	convert	the	PIL	Image	Object	to	a	file
object	before	returning,	that	is	done	by

file	=	io.BytesIO()	
image.save(file,	"JPEG")	
file.seek(0)	

return	file

We	first	create	an	empty	buffer	in	memory	using	io.ByteIO() 	and	pass	the	pointer	to
the	buffer	to	the	image.save() 	method.	This	will	store	the	file	in	memory,	finally,	we
reset	the	pointer	to	start	with	file.seek(0) 	,	and	finally	return	the	file	object.

8.5	Testing	the	API
Start	the	Flask	app	by	running	" 	flask	ru	n 	"	in	the	terminal.	Then	open	another
terminal	window	and	fire	up	the	Jupyter	Notebook	by	running	" 	jupyter	noteboo	k 	"

Getting	usage	instructions
Let’s	first	test	if	the	API	is	accessible,	to	do	that	run	the	below	code	snippet	in
Jupyter	Notebook	.

#	Jupyter	Notebook/	In[1]	
import	requests	
response	=	requests.post("http://127.0.0.1:5000/")	
response.raise_for_status

This	will	produce	the	below	output

<	bound	method	Response.raise_for_status	of	<	Response	[200]>>

The	“ 	20	0 	”	response	code	means	our	request	was	successfully	processed.	Now
run	the	below	snippet	to	see	that	the	response	was

#	Jupyter	Notebook/	In[2]	
import	json	
json.loads(response.content.decode("utf-8"))

Here,	we	first	have	to	decode	the	response	because	our	API	response	was	a	binary

stream.	Then	we	load	that	as	a	JSON	object.	This	will	produce	the	output

{'filters_available':	['blur',	
'contour',	
'detail',	
'edge_enhance',	
'edge_enhance_more',	
'emboss',	
'find_edges',	
'sharpen',	
'smooth',	
'smooth_more'],	
'usage':	{'URL':	'/<filter_available>/',	'http_method':	'POST'}}

We	have	the	usage	instructions,	now	we	can	proceed.

8.6	Getting	filtered	image
To	get	the	filtered	image,	run	the	following	and	replace	“ 	sample.jp	g 	”	with	the	path
to	the	file	of	your	choice

#	Jupyter	Notebook/	In[3]	
file	=	{	"image"	:	open("sample.jpg"	,	"rb")}	
headers	=	{	"type"	:	"multipart/image"	}	

URL	=	"http://127.0.0.1:5000"	
filter	=	"contour"	

response	=	requests.post(f"	{URL}	/	{filter}	"	,headers=headers,	files=file)	
response.raise_for_status

8.6.1	Explanation
We	first	open	the	image	that	needs	to	be	filtered	using	the	open() 	method,	then	add
it	to	a	Python	dictionary	with	the	name	“ 	imag	e 	”.

Then	we	define	the	header	that	tells	the	API	server	that	kind	of	file	this	is.
Headers	are	optional,	but	good	practice.

We	then	define	the	parameters	of	the	URL	and	querystring	and	then	finally	send
the	request	along	with	headers,	and	the	file.

When	we	ask	the	response	for	status,	it	will	show

<	bound	method	Response.raise_for_status	of	<	Response	[200]>>

This	means	our	POST	request	was	processed	successfully.

But	wait,	there’s	more!

We	have	received	the	filtered	image,	but	we	haven’t	stored	or	viewed	it	yet.	To
do	that	run

#	Jupyter	Notebook/	In[4]	
from	PIL	import	Image	
import	io	

image	=	Image.open(io.BytesIO(response.content))	
image.save("response.jpg"	,	"JPEG")	

image

We	again	import	the	PIL	library	and	io	library	to	handle	the	image.	The	response
is	converted	to	file	object	in	memory	using	io.ByteIO() 	and	then	loaded	as	an	image
using	Image.open()

Finally,	the	file	is	saved	using	image.save() 	,	you	can	change	the	“ 	response.jp	g 	”	to	the
path	of	the	file	you	want	to	save	to.

Then	we	load	the	image	into	Jupyter	,	this	smooth	operator!
Congratulations!	You	have	made	your	own	building	blocks	for	an	Instagram.

8.7	Bonus	Challenge	#2
Using	this	solution	as	a	starting	point,	update	the	program	to	include	more	filters
such	as	sepia	,	black	&	white	,	etc.
You	can	mail	the	response	to	student@CloudBytes.dev	with	Subject	line	"	Bonus
Challenge	#2	".	The	first	three	working	solutions	will	get	a	$100	Amazon	gift
voucher

Chapter	9:	Bonus	Lesson:	Deploying	the
API
We	have	created	our	image	API	,	brilliant!	But	it	is	still	running	on	our	local
machine.	To	access	it	over	the	internet,	we	need	to	set	up	a	CI/CD	pipeline	that
will	automatically	take	our	updates,	configure	the	environment,	and	then	deploy
these	API	on	any	hosting	provider.

In	this	example,	we	will	use	Heroku	for	deployment.	Below	is	a	simple
representation	of	how	this	works,

We	will	configure	our	environment	in	a	way	that,	our	code	being	pushed	to
GitHub	will	trigger	an	event	to	Heroku,	which	will	build	the	program	and	then
deploy	it	to	their	cloud	which	will	be	accessible	to	the	world.

9.1	Configuring	the	CD	Pipeline
This	assumes	you	have	created	a	fork	of	the	starter	kit	provided	in	prerequisites
and	have	updated	your	solution	in	the	branch	name	“ 	p4-image-filter-flas	k 	”

a)	Create	Heroku	Account	:	First,	go	to	the			Heroku	signup	page	provided
below	website	and	register	for	a	free	account.	This	won't	require	any	credit	card.

https://signup.heroku.com/

After	you	have	confirmed	your	email	and	set	your	password.	Login	to	the
Heroku	site	by	visiting

https://id.heroku.com/login

b)	Create	New	App	:	Once	logged	in,	click	on	" 	Create	new	ap	p 	",	then	choose	the
app	name,	and	a	region.	This	will	be	the	region	where	your	API	will	be	hosted
and	can	be	any	country.

The	app	name	must	be	unique	and	will	form	the	URL	for	your	app.

Then	click	on	" 	Add	to	pipelin	e 	"	below	the	region,	followed	by	selecting	" 	Choose	a

https://signup.heroku.com/
https://signup.heroku.com/

pipelin	e 	".	Finally	select	" 	Create	new	pipelin	e 	".	This	should	ask	you	for	the	name	of
the	pipeline	and	the	stage,	leave	this	unchanged,	and	then	click	on	"Create	ap	p 	".

c)	Configure	the	pipeline	:	Under	" 	Deployment	metho	d 	"	choose	"Connect	to	GitHu	b 	
then	scroll	below	and	click	on	the	" 	Connect	to	GitHu	b 	"	button.

d)	Authenticate	GitHub	:	You	will	be	redirected	to	GitHub	login;	login	using
your	credentials	and	allow	Heroku	to	connect	to	GitHub	.

e)	Choose	a	repository	:	On	the	right	of	your	username,	type	the	name	of	the
forked	repository	(image-filter-api-python-flas	k)	and	then	press	Searc	h 	button.	This	will
list	the	repository	below

f)	Connect	the	app	to	the	repository	:	Click	on	the	" 	Connec	t 	"	button	to	the	right
of	the	repository	name.	Then	scroll	below	to	the	Automatic	deplo	y 	section.

g)	Enable	Automatic	Deploys	:	Under	the	" 	Automatic	Deploy	s 	"	section,	click	on	the
dropdown	" 	Choose	the	branch	to	deplo	y 	"	and	choose	" 	p4-image-filter-flas	k 	",	assuming
you	have	made	all	the	updates	to	only	in	this	branch.	Then	click	on	the	" 	Enable
Automatic	Deploy	s 	"	button.

i)	Manual	Deploy	:	This	is	required	only	for	the	first	time.	After	that	the
program	will	auto-deploy	from	the	"main"	branch	every	time	you	push	updates
to	it.

j)	Connect	the	pipeline	to	GitHub	again	:	There	is	a	bug	on	Heroku	which
sometimes	will	require	you	to	connect	the	app	to	GitHub	again.	Do	so,	go	back	to
the	dashboard	by	clicking	the	Heroku	Logo	on	top	left,	or	using	the	URL	below.

https://dashboard.heroku.com/apps

Then	click	on	your	app,	if	you	see	a	message	asking	to	connect	the	pipeline
again,	go	ahead	and	do	that	by	clicking	on	" 	Connect	to	GitHu	b 	",	you	will	need	to
select	the	repository	again.
NOTE:	Heroku	uses	a	Procfile	that	defines	the	web-app	configuration.	This	is	provided	as	part	of	the	starter
kit.	Without	the	Procfile,	the	app	will	not	deploy	correctly	on	Heroku.

9.2	Testing	the	API
Your	API	app	is	up	and	running!	Note	the	URL	of	you	API	,	it	will	be	unique	based
on	the	name	you	have	given	but	should	look	like

https://api-demo-cloudbytes.herokuapp.com/

Replace	the	" 	api-demo-cloudbyte	s 	"	with	the	name	you	had	provided.

To	test,	run	the	below	in	Jupyter	Notebook

#	Jupyter	Notebook/	In[1]	
import	requests	
import	json	
#	Change	the	below	URL	to	the	URL	of	your	app	
URL	=	"https://api-demo-cloudbytes.herokuapp.com/"	
response	=	requests.get(URL)	
response.raise_for_status	
json.loads(response.content.decode("utf-8"))

Now,	you	can	try	the	filter	API	using	POST	method

#	Jupyter	Notebook/	In[2]	
file	=	{	"image"	:	open("sample.jpg"	,	"rb")}	
headers	=	{	"type"	:	"multipart/image"	}	

filter	=	"contour"	

response	=	requests.post(f"	{URL}	/	{filter}	"	,headers=headers,	files=file)	
response.raise_for_status

And	print	the	output	by	running	the	below

#	Jupyter	Notebook/	In[3]	
from	PIL	import	Image	
import	io	

image	=	Image.open(io.BytesIO(response.content))	
image.save("response.jpg"	,	"JPEG")	

image

9.3	Pro	Tip:	Testing	using	Terminal
Do	this	from	terminal
	
curl	-F	"image=@sample.jpg"	"https://api-demo-cloudbytes.herokuapp.com/blur"			--output
"heroku.jpg"

9.4	Bonus	Challenge
Build	a	frontend	for	this	API	.	Share	the	link	to	your	repository	at
student@CloudBytes.dev	with	Subject	" 	Image	Bonus	Challeng	e 	".	The	top	three
designs	before	31st	August	2021	will	get	an	Amazon	gift	voucher	worth	$100.

Chapter	10:	Introducing	FastAPI
Flask	is	brilliant,	it	is	quite	easy	to	learn,	and	by	now	you	have	somewhat
mastered	building	APIs	using	Flask	.	But	Flask	has	several	large	limitations	the
biggest	one	being	scalability.

Make	no	mistake,	Flask	is	scalable,	in	fact,	portions	of	Airbnb	run	on	Flask	and	it
cannot	get	bigger	than	that,	except,	it	can!

Netflix	,	Reddit	,	Uber	,	Mozilla	,	Samsung	,	all	of	these	use	Flask	as	part	of	their
technology	stack.	Netflix	,	who	typically	are	on	the	cutting	edge	of	technology
innovation	in	fact	chose	Flask	for	multiple	applications	internally,	but	the
keyword	is	internally.	To	understand	why,	we	first	need	to	understand
Asynchronous	Programming

10.1	Asynchronous	Programming
The	scalability	problem	with	Flask	is	with	managing	multiple	requests	together
and	serving	them	at	the	same	time.	Making	an	API	request	is	like	getting	a
takeout	for	a	group	of	friends.	Suppose	you	are	hosting	a	few	friends	for	a	party
and	want	to	order	something	to	eat.

You	choose	a	restaurant	and	order	4	dishes,	however,	since	the	restaurant	has
only	one	cook,	it	can	prepare	only	one	dish	at	a	time.	It	will	quite	a	while	for	the
cook	to	finish	your	order	because	they	must	make	them	one	after	the	other	in
sequence.

But	if	the	restaurant	had	4	cooks,	all	four	dishes	could	be	prepared
simultaneously,	making	the	whole	transaction	faster.

https://netflixtechblog.com/automation-as-a-service-introducing-scriptflask-17a8e4ad954b
https://stackshare.io/reddit/reddit
https://stackshare.io/uber-technologies/vault-uber-com
https://github.com/mozilla-releng/balrog
https://stackshare.io/engel80/apkg

Replace	restaurant	with	API	,	food	with	response	and	order	with	request	in	the
above	scenario	and	you	have	got	what	is	called	“	Asynchronous	”	API	.	What	that
means	is	you	place	multiple	requests	at	the	same	time,	the	API	prepares	all	the
responses	simultaneously,	but	sends	it	back	only	when	you	ask	for	the	next	one.

The	example	is	of	course	is	an	oversimplification,	but	a	good	demonstration	of
the	concept.

And	this	brings	us	back	to	Flask	,	while	it	is	possible	to	perform	asynchronous
task	programming	with	Flask	,	it	is	based	on	Flask	is	based	on	WSGI	,	which	is
synchronous	by	default.	Thus,	making	it	inherently	slow	especially	compared	to
framework	and	languages	that	are	designed	for	speed	or	excel	at	asynchronous
programming	such	as	NodeJS,	Go,	etc.	And	therefore,	Flask	is	rarely	used	for
external	facing	mass-user	platforms.

And	we	haven’t	even	got	to	the	other	issues	with	Flask	such	as	data	validation,
web-socket	support,	and	automatic	documentation.

10.2	Enter	FastAPI
FastAPI	is	a	relative	newcomer	but	a	modern	framework	that	is	purpose-built
using	the	latest	that	Python	has	to	offer.	It	was	launched	only	about	3	years	ago
but	has	seen	steady	adoption	and	increasing	is	replacing	Flask	,	including	being
integrated	with	Microsoft	products	in	their	ML	APIs	.

It	has	taken	off	because	of	two	reasons,	firstly,	it	is	fast,	very	fast.	This	is
because	of	the	out-of-the	box	support	for	async	feature	that	was	introduced	in

https://github.com/tiangolo/fastapi
https://github.com/tiangolo/fastapi/pull/26#issuecomment-463768795

Python	3.6+	.	Flask	on	the	other	hand,	relies	on	hacks	and	other	libraries	to
achieve	the	same.
	
Secondly,	it	solves	many	of	other	problems	that	make	Flask	hard	to	your	without
writing	a	lot	of	additional	code	such	as	data	validation,	or	even	automated
documentation.	I	might	be	overstating	it	but	FastAPI	is	to	Flask	what	a
supercomputer	is	to	TI-82	calculator.

So,	let’s	go	ahead	and	experiment	with	FastAPI	.

If	you	have	installed	the	dependencies	from	the	‘ 	requirements.tx	t 	’	from	the	starter
kit,	FastAPI	should	already	be	installed.

To	switch	to	the	problem	branch	for	this	exercise	run	the	below	command

git	checkout	p5-hello-fastapi

10.3	Understanding	the	Starter	Kit
Repository	Structure:	Once	you	have	checked	out	the	branch,	you	should	see
the	following	file	structure	(ignore	the	other	files)

.	
├──	main.py	
└──	requirements.txt

a)	main.py
from	fastapi	import	FastAPI	

app	=	FastAPI()	

@app.get("/")	
def	index	():	
				return	"TODO"
	
There	are	2	points	that	needs	to	be	noted

1.	 The	convention	is	to	call	the	main	program	file	“ 	main.p	y 	”
2.	 The	syntax	is	exactly	like	Flask,	except	instead	of	initialising	a	Flask	app	we	initialise	a	FastAPI	app

10.4	Saying	Hello	FastAPI

To	do	so,	all	we	need	to	do	is	change	the	TODO	.

main.py
from	fastapi	import	FastAPI	

app	=	FastAPI()	

@app.get("/")	
def	index	():	
				return	{	"hello"	:		"FastAPI"	}

That’s	it.	It’s	like	using	Flask	,	but	it’s	not.	We’ll	see	the	differences	as	we	move
further.

To	run	the	program,	from	the	terminal	execute

uvicorn	main:app	--reload

This	will	start	the	app	at	http://127.0.0.1:8000/	.	That	you	can	open	with	a	browser

Alternatively,	test	the	API	using	the	cURL	utility	by	running

curl	-X	GET	"http://127.0.0.1:8000/"

	

http://127.0.0.1:8000/

Chapter	11:	Dictionary	using	FastAPI
In	this	chapter,	we	will	do	the	following

1.					Reimplement	our	dictionary	API	using	FastAPI
2.					Make	the	API	asynchronous	and	see	it	in	action.

To	get	started	switch	to	the	problem	branch	by	running	the	below

git	checkout	p6-dictionary-fastapi

This	will	clone	the	starter	kit,	which	is	very	similar	to	our	Flask	dictionary	starter
kit

11.1	Understanding	the	Starter	Kit
Repository	Structure	:	The	repository	will	contain	the	following	files

.	
├──	main.py	
├──	data	
│			└──	dictionary.db	
├──	model	
│			└──	dbHandler.py	
└──	requirements.txt

main.py
Looks	very	similar	to	the	Flask	application	but	it	has	a	few	additional	headers
from	typing	import	List	,	Optional
from	fastapi	import	FastAPI	,	Query
from	fastapi	.	encoders	import	jsonable_encoder
from	model	.	dbHandler	import	match_exact	,	match_like
	
app	=	FastAPI	()
	
@	app	.	get	("/")
def	index	():
					"""
				DEFAULT	ROUTE
				This	method	will
				1.	Provide	usage	instructions	formatted	as	JSON

				"""
					return	"TODO"
	
	
@	app	.	get	("/dict")
def	dictionary	():
					"""
				DEFAULT	ROUTE
				This	method	will
				1.	Accept	a	word	from	the	request
				2.	Try	to	find	an	exact	match,	and	return	it	if	found
				3.	If	not	found,	find	all	approximate	matches	and	return
				"""
					return	"TODO"

model/dbHandler.py
This	file	remains	unchanged	from	the	Flask	example

data/dictionary.db
This	too,	remains	unchanged.

11.2	Implementing	the	usage	instructions
The	only	change	we	will	have	to	do	in	our	earlier	Flask	code,	is	instead	of	using
jsonify() 	method,	we	need	to	use	jsonable_encoder() 	method.

@	app	.	get	("/")
def	index	():
					"""
				DEFAULT	ROUTE
				This	method	will
				1.	Provide	usage	instructions	formatted	as	JSON
				"""
					response	=	{	"usage"	:	"/dict?=<word>"	}
					return	jsonable_encoder	(response)

11.3	Implementing	the	dictionary
To	complete	our	dictionary()	method,	again,	we	need	to	make	only	two	changes

1.					Us	e 	jsonable_encoder() 	to	encode	our	responses

2.					Instead	of	using	request.args.get() 	to	capture	the	“word”	parameter	from	query,	just	put	“word”	in
the	dictionary() 	method	arguments	as	show	below

@	app	.	get	("/dict")
def	dictionary	(word	:	str):
					"""
				DEFAULT	ROUTE
				This	method	will
				1.	Accept	a	word	from	the	request
				2.	Try	to	find	an	exact	match,	and	return	it	if	found
				3.	If	not	found,	find	all	approximate	matches	and	return
				"""
					if	not	word	:
									response	=	{	"status"	:	"error"	,	"word"	:	word	,	"data"	:	"word	not	found"	}
									return	jsonable_encoder	(response)
	
					definitions	=	match_exact	(word)
					if	definitions	:
									response	=	{	"status"	:	"success"	,	"word"	:	word	,	"data"	:	definitions	}
									return	jsonable_encoder	(response)
	
					#	Try	to	find	an	approximate	match
					definitions	=	match_like	(word)
					if	definitions	:
									response	=	{	"status"	:	"partial"	,	"word"	:	word	,	"data"	:	definitions	}
									return	jsonable_encoder	(response)
					else	:
									response	=	{	"status"	:	"error"	,	"word"	:	word	,	"data"	:	"word	not	found"	}
									return	jsonable_encoder	(response)

As		you	can	see	from	above,	we	defined	the	method	dictionary() 	to	handle	GET
requests	at	the	/dic	t 	path.	But	we	also	added	word	as	a	parameter.

def	dictionary	(word	:	str):

FastAPI	will	interpret	this	as	a	request	for	an	argument	(like	request.get.args()).

WARNING	:	The	name	of	this	argument	and	the	name	of	a	parameter	path
should	be	different.

i.e.	you	cannot	have	a	path	like	the	below

@	app	.	get	("/{word}/")
def	dictionary	(word	:	str):

FastAPI	will	interpret	the	above	as	a	path	and	not	an	argument.	You	will	instead
need	to	use	something	like

@	app	.	get	("/{word_path}/")
def	dictionary	(word_path	:	str,	word_arg	:	str):

11.4	Testing	the	API
The	final	program	would	look	like	below

main.py
from	typing	import	List	,	Optional
from	fastapi	import	FastAPI	,	Query
from	fastapi	.	encoders	import	jsonable_encoder
from	model	.	dbHandler	import	match_exact	,	match_like
	 	app	=	FastAPI	()
	
	
@	app	.	get	("/")
def	index	():
					"""
				DEFAULT	ROUTE
				This	method	will
				1.	Provide	usage	instructions	formatted	as	JSON
				"""
					response	=	{	"usage"	:	"/dict?=<word>"	}
					return	jsonable_encoder	(response)
	
	
@	app	.	get	("/dict")
def	dictionary	(word	:	str):
					"""
				DEFAULT	ROUTE
				This	method	will
				1.	Accept	a	word	from	the	request
				2.	Try	to	find	an	exact	match,	and	return	it	if	found
				3.	If	not	found,	find	all	approximate	matches	and	return
				"""

					if	not	word	:
									response	=	{	"status"	:	"error"	,	"word"	:	word	,	"data"	:	"word	not	found"	}
									return	jsonable_encoder	(response)
	
					definitions	=	match_exact	(word)
					if	definitions	:
									response	=	{	"status"	:	"success"	,	"word"	:	word	,	"data"	:	definitions	}
									return	jsonable_encoder	(response)
	
					#	Try	to	find	an	approximate	match
					definitions	=	match_like	(word)
					if	definitions	:
									response	=	{	"status"	:	"partial"	,	"word"	:	word	,	"data"	:	definitions	}
									return	jsonable_encoder	(response)
					else	:
									response	=	{	"status"	:	"error"	,	"word"	:	word	,	"data"	:	"word	not	found"	}
									return	jsonable_encoder	(response)

Restart	the	program	by	running

uvicorn	main:app	--reload

To	test	out	program,	go	to	your	terminal	and	run

curl	-X	GET	"http://127.0.0.1:8000/dict?word=datar"

This	will	throw	out	the	same	result	as	in	Flask	example.

11.5	:	FastAPI	OpenAPI	Docs	and	Swagger	UI
All	developers	hate	building	documentation,	and	if	anyone	says	otherwise	rest
assured,	they	are	lying.	And	there	are	good	reasons,	for	starters,	it	is	time
consuming.	Secondly,	API	documentation’s	main	purpose	is	to	allow	other	users
to	write	applications	using	these	APIs	.

Thus,	the	more	documentation	is	available,	the	better	the	chances	of	the
developers	understanding	how	to	use	API	,	the	higher	the	changes	of	their	finding
bugs.

But	seriously,	having	good	documentation	solves	a	lot	of	problems.	E.g.	if	you
are	a	backend	developer	building	an	API	for	the	frontend	developer	to	use,	good
documentation	will	help	them	understand	the	behaviour	of	the	API	reducing
errors	and	development	timeframes.	But	as	I	mentioned,	building	good
documentation	is	time	consuming,	until	developers	figured	out	how	to	automate
it.

This	is	where	FastAPI’s	automatic	documentation	engine	makes	life	a	lot	easier
by	generating	APIs	documentation	using	the	Docstring	and	the	method
declarations	by	automatically	converting	these	into	a	UI	that	can	be	used	by
developers.

11.5.1	Working	with	Swagger	UI
While	the	FastAPI	app	is	running	start	your	browser	and	go	to	the	below	URL

http://127.0.0.1:8000/docs

	

You	will	see	a	page	like	the	one	below

This	is	a	UI	interface	of	the	automated	documentation	that	has	been	generated.
You	can	clearly	see	there	are	two	paths	that	map	to	what	we	had	coded	in	out
“main.py”

1.					“ / 	”	:	which	has	an	“ 	inde	x 	”	method	and	responds	to	“	GET	”	method
2.					“ 	/dic	t 	”	:	which	has	a	“ 	dictionar	y 	”	method	and	responds	to	“	GET	”	method

Additionally,	if	you	expand	either	of	the	methods	in	the	browser	by	clicking	on
the	downwards	facing	arrowhead,	you	will	see	it	has	the	comments	that	we	had
put	in	our	code,	see	the	areas	highlighted	in	in	the	next	figure

It	also	tells	you	what	kind	of	data	it	sends	back,	and	what	kind	of	input	it	takes.

Now	if	you	click	on	the	“ 	Try	it	ou	t 	”	button	on	the	top	left,	and	then	click	on
execute,	it	will	send	a	cURL	request	and	present	the	response	as	well.

That	is	stunning!	This	makes	a	developer’s	life	a	lot	easier	where	they	do	not
have	to	know	cURL	commands	or	write	scripts	to	test	their	APIs	during	the
development.

But	we’re	not	done	yet.	If	you	expand	on	the	second	path	“ 	dic	t 	”,	and	then	click
Try	it	ou	t 	”,	the	UI	will	automatically	create	a	text	box	with	the	parameter	that	we
had	coded.

If	you	want	to	send	angry	tweets	to	@rehanhaider	,	about	why	didn’t	we	make	it	so	easy	in	the
beginning	of	book,	I	will	totally	understand.	If	not,	enjoy	this	meme.

https://twitter.com/rehanhaider

11.6	Handling	a	list	of	words
We	will	change	our	dictionary	API	to	and	make	it	able	to	handle	multiple	words.
To	do	that	we	need	to	change	the	dictionary() 	method	as	per	the	below

main.py
#	s6-part2-dictionary-fastapi/main.py
from			typing			import			List	,		Optional
from			fastapi			import			FastAPI	,		Query
from			fastapi	.	encoders			import			jsonable_encoder
from			model	.	dbHandler			import			match_exact	,		match_like
	
app			=			FastAPI	()
	
@	app	.	get	("/")
def			index	():
					"""
				DEFAULT	ROUTE
				This	method	will
				1.	Provide	usage	instructions	formatted	as	JSON

				"""
					response			=		{	"usage"	:		"/dict?=<word>"	}
					return			jsonable_encoder	(response)
	
@	app	.	get	("/dict")
def			dictionary	(words	:		List	[str]		=			Query	(None)):
					"""
				DICTIONARY	ROUTE
				This	method	will
				1.	Accept	a	word	from	the	request
				2.	Try	to	find	an	exact	match,	and	return	it	if	found
				3.	If	not	found,	find	all	approximate	matches	and	return
				"""
					if			not			words	:
									response			=		{
													"status"	:		"error"	,	
													"word"	:		words	,	
													"data"	:		"word	not	found"
												}
									return			jsonable_encoder	(response)
	
					#	Initialise	the	response
					response			=		{	"words"	:	[]}
	
					for			word			in			words	:
									#	Try	to	find	an	exact	match
									definitions			=			match_exact	(word)
									if			definitions	:
													response	["words"].	append	({
																	"status"	:		"success"	,	
																	"word"	:		word	,	
																	"data"	:		definitions
																})
									else	:
													#	Try	to	find	an	approximate	match
													definitions			=			match_like	(word)
													if			definitions	:
																	response	["words"].	append	({
																					"status"	:		"partial"	,	
																					"word"	:		word	,	
																					"data"	:		definitions

																				})
													else	:
																	response	[words].	append	({
																					"status"	:		"error"	,	
																					"word"	:		word	,	
																					"data"	:		"word	not	found"
																				})
	
					return			jsonable_encoder	(response)

Explanation
As	you	can	see,	almost	all	the	program	is	same,	except	we	changed	the	dictionary()
method	to

def			dictionary	(words	:		List	[str]		=			Query	(None))

Lots	to	unpack	here	so	let’s	first	see	what	does	the	“ 	: 	”	after	the	variable	words
mean.

This	is	a	feature	introduced	in	Python	3.6+	called	type	hinting.	Let’s	say	we
declare	a	variable	x	that	is	supposed	to	be	an	int.	In	can	be	expressed	as	the
declaration	below

x	:		int			=			15

This	means	that	x	is	a	variable	of	type	“ 	in	t 	”	which	is	assigned	value	15.	Not
digressing	from	the	topic	and	going	too	deep	into	Python	as	a	language,	but	type
hinting	helps	editors,	and	frameworks	put	in	tighter	checking	and	ensure	that
datatypes	are	consistent.

Type	hinting	is	part	of	the	“ 	typin	g 	”	module,	which	is	imported	in	the	first	line	in
the	header.

Also,	type	hinting	is	NOT	MANDATORY	for	most	python	programs.	But	in	our
case,	because	FastAPI	does	data	validation,	it	is	mandatory	(sort	of).

Thus,	what	the	line	means	is	that	word	is	an	argument,	which	is	a	list	of	strings,
and	whose	value	is	the	output	for	Query() 	method.	Query()	is	used	to	capture
querystring.

This	is	how	we	catch	multiple	lists	in	FastAPI	.

11.7	Testing	The	API
Run	the	program	by	executing	below,	however,	you	may	not	need	to	do	that
unless	you	have	manually	stopped	the	program.

uvicorn	main:app	–reload

The	“ 	reloa	d 	”	flag	means	any	changes	that	you	are	making	to	the	API	are
automatically	executed	in	real-time.

So,	open	the	browser	and	navigate	to	the	autogenerated	API	documentation	by
visiting	the	URL

http://127.0.0.1:8000/docs

You	can	use	the	“ 	Try	it	ou	t 	”	feature	from	the	browser	and	then	press	on	“ 	Add	string
ite	m 	”	to	add	a	new	line	where	you	can	form	your	query	and	send	multiple	words

Alternatively,	you	can	always	do	this	via	curl.

curl	-X	GET	‘http://127.0.0.1:8000/dict?words=data&words=estimate'

	

	

	

	

Chapter	12:	Image	filters	using	FastAPI
Now	at	the	risk	of	becoming	repetitive,	let’s	quickly	rebuild	our	image	filter	API	
We	start	by	switching	to	the	branch	that	contains	the	problem	starter	kit.	To	do
that,	run	the	below	command

git	checkout	p7-filter-fastapi

Like	our	previous	examples,	we	simply	make	small	changes	to	the	Flask	code	in
the	following	manner

main.py

from			bin	.	filters			import			apply_filter
from			typing			import			List	,		Optional
from			fastapi			import			FastAPI	,		File	,		UploadFile
from			fastapi	.	encoders			import			jsonable_encoder
from			fastapi	.	responses			import			StreamingResponse
import			io
	

app			=			FastAPI	()
	
#	Read	the	PIL	document	to	find	out	which	filters	are	available	out-of	the	box
filters_available			=		[
					"blur"	,
					"contour"	,
					"detail"	,
					"edge_enhance"	,
					"edge_enhance_more"	,
					"emboss"	,
					"find_edges"	,
					"sharpen"	,
					"smooth"	,
					"smooth_more"	,
]
	

@	app	.	api_route	("/"	,			methods	=	["GET"	,			"POST"])
def			index	():
					"""

				Return	the	usage	instructions	that	specifies
				1.	which	filters	are	available,	and
				2.	the	method	format
				"""
					response			=		{
									"filters_available"	:		filters_available	,
									"usage"	:	{	"http_method"	:		"POST"	,		"URL"	:		"/<filter_available>/"	},
				}
					return			jsonable_encoder	(response)
	

@	app	.	post	("/	{filter}	")
def			image_filter	(filter	:		str	,		img	:		UploadFile			=			File	(...)):
					"""
					TODO	:
				1.	Checks	if	the	provided	filter	is	available,	if	not,	return	an	error
				2.	Check	if	a	file	has	been	provided	in	the	POST	request,		
							if	not	return	an	error
				3.	Apply	the	filter	using	apply_filter()	method	from	bin.filters
				4.	Return	the	filtered	image	as	response
				"""
					if			filter			not			in			filters_available	:
									response			=		{	"error"	:		"incorrect	filter"	}
									return			jsonable_encoder	(response)
	
					filtered_image			=			apply_filter	(img	.	file	,		filter)
	
					return			StreamingResponse	(filtered_image	,		media_type	=	"image/jpeg")

Explanation

For	the	“ 	/ 	”	route	we	changed	“ 	route() 	”	method	that	is	used	in	Flask,	to	“ 	api_route(
”	method	which	performs	the	same	function	in	FastAPI	.

The	/filter	route	becomes	even	simpler,	albeit	with	a	few	tricky	changes.	To	receive
the	file	as	part	of	POST	request,	we	created	an	argument	“ 	im	g 	”	and	used	a
method	File(…) 	.	This	is	FastAPI	method	to	receive	multipart	form-data,	or	in	other
words,	the	binary	data	that	the	cURL	sends	to	the	API	.

Multipart	form-data	is	just	a	fancy	term	for	organising	the	data	that	you’re
sending	as	part	of	your	HTTP	request/response.	It	is	multipart	because	the	body
is	broken	into	small	chunks,	form-data	signifies	this	is	a	POST	request	coming
out	from	an	HTML	form	but	is	typically	used	to	signify	a	file	is	being	sent.

By	default,	FastAPI	returns	a	string,	but	we	want	to	send	back	a	file.	So,	we	need
to	stream	the	binary	data	that	we	have	to	the	client.	For	this	we	use	the
StreamingResponse() 	method.

A	key	part	to	notice,	which	is	a	big	advantage	with	FastAPI	,	is	the	fact	that	we
did	not	need	to	check	if	the	file	hasn’t	been	sent.	This	is	because	once	we	declare
that	“ 	im	g 	”	is	an	uploaded	file	coming	as	multipart	form-data,	FastAPI	does	the
check	itself	and	throws	a	generic	error	message.	We	can	still	catch	this	error	and
send	a	more	specific	response	but	not	required	really.

12.1	Bonus:	Deployment	to	Heroku
Use	the	same	instructions	as	in	chapter	9.	However,	deploying	FastAPI	requires
the	Procfile	command	to	be

web:	uvicorn	main:app	--host=0.0.0.0	--port=${PORT:-5000}

	
	

Chapter	13:	FastAPI	async	/	await
We	talked	about	asynchronous	programming	a	lot	in	previously,	but	so	far,	we
have	been	using	FastAPI	exactly	like	Flask	.	In	this	chapter,	we	will	make	our
filter	API	asynchronous	and	test	if	it	improves	functionality.

13.1	Making	the	program	asynchronous
To	begin	you	should	know,	starting	Python	3.6+	,	async/await	keywords	are
available	natively	which	makes	it	quite	intuitive	to	define	asynchronous	code.
This	makes	it	look	like	a	normal	program	and	make	it	asynchronous	by	adding
async	declaration	and	awaiting	at	the	right	moments.

But	what	are	async/await?	Let’s	look	at	the	below	pseudocode

async			def			get_dish	(orders):
					#	Do	some	asynchronous	food	cooking
					return			dishes

async:	is	a	keyword	to	declare	an	asynchronous	function.	By	adding	async	we
tell	Python	that	inside	the	function,	it	must	be	aware	of	multiple	dishes	cooking
at	the	same	time	and	be	ready	to	move	to	a	different	dish	while	one	is	cooking
before	coming	back.

When	you	want	to	call	a	function	that	starts	with	async	,	you	must	await	it.	So,	if
we	tried	to	run

dishes			=			get_dish	(orders)

It	will	not	work,	because	get_dish() 	was	defined	as	an	async	function	so	it	is
expecting	to	be	awaited	till	it	completes	its	coroutines

Instead	you	need	to	run	the	following	o	get	the	results

dishes			=			await			get_dish	(orders)

Keep	in	mind,	if	you	call	an	asynchronous	method	it	must	be	awaited	otherwise
it	will	throw	an	error.

However,	await	keyword	can	only	be	used	inside	an	async	function.	What	that
means	is	you	get	into	a	chicken	and	egg	situation	where	you	need	to	create	an

async	function	to	call	another	async	function,	but	to	execute	the	first	async
function	you	need	another	async	function.

Luckily,	in	FastAPI	you	don’t	need	to	worry	about	that	as	the	path	operation
handles	that	for	you.

Outside	of	that,	you	will	need	to	run	the	coroutines	using	an	event	loop,	we	will
see	an	example	in	our	tests.

Finally,	you	heard	the	term	coroutine	a	few	times	above,	it	is	just	a	very	fancy
term	for	what	is	being	returned	by	any	async	function	.	Sometimes,	coroutines	term
is	also	used	to	summarise	using	asynchronous	code	with	async	and	await

13.2	Making	the	filter	API	asynchronous
The	real	advantage	of	asynchronous	program	doesn’t	lie	just	in	the	program
itself.	The	program	can	also	do	multitasking	/	multithreading	by	itself.	However,
the	advantage	is	in	being	able	to	respond	to	several	requests	that	are	arriving	at
the	same	time	(parallelism).	As	we	proceed,	we	will	test	this	and	see	how	our
API	performance	improves	by	almost	50-80%.

Then	change	the	index() 	function	definition	in	main.p	y 	as	per	below

async			def			index	():
					"""
				Return	the	usage	instructions	that	specifies
				1.	which	filters	are	available,	and
				2.	the	method	format
				"""
					response			=		{
									"filters_available"	:		filters_available	,
									"usage"	:	{	"http_method"	:		"POST"	,		"URL"	:		"/<filter_available>/"	},
				}
					return			jsonable_encoder	(response)

	

13.2.1	Test	scenarios
Our	scenario	that	we	send	10	API	requests	to	out	API	endpoint	under	the	following
conditions
1.					Sequential	API	calls	to	sequential	API	endpoint

2.					Asynchronous	API	calls	to	sequential	API	endpoint
3.					Sequential	API	calls	to	asynchronous	API	endpoint
4.					Asynchronous	API	calls	to	asynchronous	API	endpoint

13.3	Test	Scenario	1
Sequential	API	calls	to	sequential	API	endpoint

Switch	back	to	the	filter	branch	by	running,	assuming	this	is	the	branch	you	are
using	for	the	API

git	checkout	p7-filter-fastapi
	
Start	the	program	by	running
uvicorn	main:app	--reload

Now,	before	you	open	jupyter	notebook	we	need	to	install	a	few	libraries	to	the
system-wide	python	installation.	By	default,	the	Jupyter	Notebook	will	use	the
system-wide	Python	installation.	Install	the	following	libraries	using	the
commands	below	one

Pip3	install	aiohttp[speedups]

We	will	use	aiohtt	p 	for	our	asynchronous	API	calls.

Now	open	a	new	Jupyter	Notebook	and	import	the	libraries	required	by	running
the	below

#	Jupyter	Notebook/	In[1]	
import		aiohttp
import		time
import		asyncio
import		requests

Then	let’s	send	the	10	API	calls	and	measure	the	time	taken	for	the	operation	to
complete	by	running	the	below

#	Jupyter	Notebook/	In[2]
URL			=			"http://127.0.0.1:8000"
start			=		time.	time	()
results			=		[]

for			i			in			range	(10):
					results	.	append	(requests.	post	(URL).content)
print	(f	"Time:		{	time.	time	()	-	start	}	")

Explanation	:

This	snippet	will	execute	the	below	steps	10	times	sequentially

1.					Send	an	API	call
2.					Capture	the	response
3.					Add	the	contents	response	into	a	list	named	“ 	result	s 	”

For	me	it	took	~14.0	seconds	to	complete.

13.4	Test	Scenario	2
Asynchronous	API	calls	to	sequential	API	endpoint

14	seconds	is	not	bad,	can	we	do	better?	What	if	we	sent	all	10	API	requests	at
the	same	time?

It	will	improve	the	performance	at	the	client	end	(Jupyter	Notebook)	but	our
API	server	is	still	sequential	and	will	respond	to	the	APIs	call	one	sequentially.

To	test	this,	we	first	need	to	create	a	function	that	sends	this	request	using	aiohttp

#	Jupyter	Notebook/	In[3]
URLS			=		[]
for			i			in			range	(10):
					URLS	.	append	("http://127.0.0.1:8000")
	
async			def			test	(URL):
					async			with			aiohttp	.	ClientSession	()		as			session	:
									async			with			session	.	post	(URL)		as			resp	:
													return			await			resp	.	text	()

Then	let’s	execute	the	above	function	by	executing	it	all	at	once	by	running	the
below

#	Jupyter	Notebook/	In[4]
start			=			time	.	time	()
loop			=			asyncio	.	get_event_loop	()
results			=			await			asyncio	.	gather	(*[loop	.	create_task	(test	(URL))		for			URL

URLS],		return_exceptions	=			True)
print	(f	"Time:		{	time	.	time	()	-	start	}	")

Explanation	:

NOTE:	This	snippet	will	only	run	in	Jupyter	Notebook.	The	reasons	are	a	bit
convoluted	but	if	you	try	to	run	it	as	a	program	directly,	it	will	throw	an	error
stating	no	event	loop	exists.

The	short	explanation	is	that	Jupyter	Notebooks	run	in	an	async	loop	to	begin
with,	and	you	cannot	create	an	async	event	loop	inside	an	async	event	loop.
Which	is	why	we	used,

loop			=			asyncio	.	get_event_loop	()

To	fetch	the	exiting	loop.	Then	we	used	asyncio.gather() 	to	execute	a	loop	of
activities.

This	snippet	sent	10	API	calls	simultaneously	to	our	API	,	but	considering	our	API
is	still	synchronous,	it	will	handle	and	response	one	at	the	time,	but	you	will	see
a	reduction	at	the	client	end.
For	me	this	test	took	~8.3	seconds

13.5	Test	scenario	3
Sequential	API	calls	to	asynchronous	API	endpoint

To	make	our	program	asynchronous,	all	we	need	to	do	is	add	the	keyword	async
before	the	index() 	function	definition	as	shown	below

@	app	.	api_route	("/"	,			methods	=	["GET"	,			"POST"])
async			def			index	():
					"""
				Return	the	usage	instructions	that	specifies
				1.	which	filters	are	available,	and
				2.	the	method	format
				"""
					response			=		{
									"filters_available"	:		filters_available	,
									"usage"	:	{	"http_method"	:		"POST"	,		"URL"	:		"/<filter_available>/"	},
				}
					return			jsonable_encoder	(response)

Go	back	to	Jupyter	Notebook	and	run	the	below	snippet	again

#	Jupyter	Notebook/	In[2]
URL			=			"http://127.0.0.1:8000"
start			=		time.	time	()
results			=		[]
for			i			in			range	(10):
					results	.	append	(requests.	post	(URL).content)
print	(f	"Time:		{	time.	time	()	-	start	}	")

This	time,	while	our	API	is	capable	of	performing	asynchronously,	but	it	gets
only	1	request	at	a	time,	so	the	time	taken	to	perform	these	will	remain	very
similar.
My	execution	completed	in	~13.4	seconds,	very	close	to	the	14	seconds	in	Test	Scenario	1.

13.6	Test	Scenario	4
Asynchronous	API	calls	to	asynchronous	API	endpoint

Our	API	is	already	capable	of	handling	tasks	asynchronously.	To	test	this	let’s	re-
run	this	snippet	from	Test	Scenario	2

#	Jupyter	Notebook/	In[4]
start			=			time	.	time	()
loop			=			asyncio	.	get_event_loop	()
results			=			await			asyncio	.	gather	(*[loop	.	create_task	(test	(URL))		for			URL			in			URLS],		return_exceptions
True)
print	(f	"Time:		{	time	.	time	()	-	start	}	")

Just	as	in	Test	Scenario	2	,	we	are	sending	10	API	calls	simultaneously,	but	this
time	our	API	will	execute	these	not	in	sequence,	but	asynchronously	thus
executing	faster.
In	my	case	it	took,	drum	roll	please,	5	seconds!!

13.7	Conclusion
We	saw	the	execution	time	going	down	from	14	seconds	down	to	5	seconds,
almost	64%	improvement,	even	though	this	example	was	rather	simplistic	but
serves	the	purpose	to	show	the	kind	of	performance	improvements	that	can	be
designed	with	asynchronous	programming.

13.8	Bonus	Challenge
Make	the	entire	filter	API	asynchronous	with	the	following	specifications
1.					All	functions	are	async	with	await	at	the	right	statements
2.					The	API	should	be	able	to	take	multiple	images,	apply	the	filter	and	return	a

zipped	file	with	all	images
	
Send	in	your	GitHub	repository	link	to	student@CloudBytes.dev	with	Subject	"
Async	Bonus	Challenge	".	The	top	3	designs	before	31	st	August	will	get	$200
Amazon	gift	vouchers.

	

	

Chapter	14:	Making	a	TODO	API
TODO	apps	are	a	cornerstone	of	learning	development,	that	is	why	you	will	see
them	everywhere.	Internet	is	full	of	countless	tutorials	on	how	to	develop	them.

In	fact,	developing	a	TODO	is	app	is	considered	landmark	achievement	for	any
developer.	So	unsurprisingly,	we’re	going	to	build	one	too.	The	only	difference
being,	our	TODO	app	will	be	a	simple	Web	API	that	you	can	interact	with

14.1	API	Specifications
Our	simple	TODO	app	should	be	able	to	do	the	following
1.					Create	a	new	task,	the	task	can	contain

a.	 Serial	Number	:	a	unique	identifier	for	the	task
b.	 Summary	:	Description	of	the	task
c.	 Priority	:	With	scale	from	1	to	4,	1	being	highest

2.					Ability	to	modify	the	task	Summary,	or	Priority,
3.					Ability	to	delete	a	task

Finally,	for	sake	of	simplicity,	we	will	store	the	tasks	in	a	simple	JSON	file,
however,	this	can	easily	be	changes	to	a	Relational	DB	(MySQL	,	Postgres	,	etc.)
or	No-SQL	database	(MongoDB	,	etc.)

14.2	Initialise	the	environment
Follow	the	instructions	from	Chapter	3	and	use	the	below	the	starter	kit	for	this
exercise

https://github.com/CloudBytesDotDev/todo-api-fastapi.git

You	need	to	do	the	following,

1.					Fork	the	repository	to	your	account
2.					Clone	the	repository	to	your	PC
3.					Create	a	Python	virtual	environment
4.					Activate	the	environment
5.					Install	the	dependencies

14.3	Understanding	the	starter	kit

Repository	Structure	:	Our	starter	kit	contains	the	following	templates
.	
├──	main.py	
├──	data	
│			└──	tasks.json	
├──	model
│			├──	model.py	
│			└──	taskman.py
└──	requirements.txt

main.py
from			fastapi			import			FastAPI
from			datetime			import			datetime
from			typing			import			Optional
	
from			fastapi	.	encoders			import			jsonable_encoder
from			model	.	model			import			Task	,		TaskList
import			model	.	taskman			as			taskman
	
app			=			FastAPI	()
	
@	app	.	get	("/api/tasks")
async			def			get_tasks	():
					"""	TODO
				Fetch	the	list	of	all	tasks
				"""
					return			"TODO"
	
@	app	.	get	("/api/tasks/	{id}	")
async			def			get_task	(id	:		int):
					"""	TODO
				Fetch	the	task	by	id
				"""
					return			"TODO"
	
@	app	.	post	("/api/tasks/create")
async			def			create_task	(task	:		Task):
					"""	TODO
				1.	Create	a	new	task	and
				2.	Return	the	details	of	task

				"""
					return			"TODO"
	
@	app	.	put	("/api/tasks/	{id}	/update")
async			def			update_task	(id	:		int	,		task	:		Task):
					"""	TODO
				1.	Update	the	task	by	id
				2.	Return	the	updated	task
				"""
					return			"TODO"
	
@	app	.	delete	("/api/tasks/	{id}	/delete")
async			def			delete_task	(id	:		int):
					"""	TODO
				1.	Delete	the	task	by	id
				2.	Return	a	confirmation	of	deletion
				"""
					return			"TODO"

Our	main	program	contains	5	paths

1.					“ 	/api/task	s 	”:	Will	respond	with	a	list	of	all	tasks
2.					“ 	/api/tasks/{id	} 	”:	By	specifying	one	can	fetch	a	task	by	specifying	the	ID
3.					“ 	/api/tasks/creat	e 	”:	It	creates	a	task	and	returns	it	along	with	ID
4.					“ 	/api/tasks/{id}/updat	e 	”:	Update	a	specific	task	by	ID
5.					“ 	/api/tasks/{id}/delet	e 	”:	Delete	the	task	by	ID

Additionally,	in	the	methods	create_tas	k 	and	update_task	, 	you	would	notice	an
argument	of	the	type	“ 	Tas	k 	”.	Tas	k 	is	a	class	that	we	will	define	that	describes	the
data	structure	of	a	task,	i.e.	summary	and	priority.

model/model.py
Our	data	will	be	organised	in	the	following	way

1.					A	tasklist	that	will	contain	an	ID	of	the	task	along	with	task
2.					A	task	that	will	contain	summary	and	priority

The	above	data	structure	has	been	defined	in	as	two	classes	that	form	the	model
of	our	data

from			pydantic			import			BaseModel
from			datetime			import			datetime
from			typing			import			NewType	,		Optional
	
#	Declare	a	new	type	of	variable	ID
ID			=			NewType	("id"	,		int)
	
class			Task	(BaseModel):
					"""Definition	of	components	of	a	task"""
					summary	:		str
					priority	:		int
					#	due_date:	Optional[datetime]
	
class			TaskList	(BaseModel):
					"""Definition	of	the	TaskList"""
					id	:		ID
					task	:		Task

But	these	aren’t	ordinary	classes,	and	instead	inherit	the	properties	of	BaseMode	l
from	a	library	called	Pydantic	.	More	on	that	later,	but	TL;DR	version	is	Pydantic
enforces	that	the	data	that	you	receive	is	validated	as	per	the	model	schema,	i.e.
if	you	ask	for	an	integer,	you	get	an	integer	an	integer.

model/taskman.py
This	is	our	task	handler.	We	could	have	built	this	inside	the	routes	themselves
but	the	reason	why	they	are	split	is	because	of	top-down	design	paradigms	where
one	can	replace	the	handler	which	currently	handles	JSON	,	to	a	handler	that
handles	either	a	Relational	DB	or	a	NoSQL	DB	without	changing	anything	in	the
routes.

Or	if	we	wanted	to	change	the	routes	in	future	you	don’t	have	to	change	anything
in	task	handler.

from			model	.	model			import			Task	,		TaskList
import			json
from			pydantic			import			parse_file_as
from			typing			import			List	,		Optional
	
filepath			=			"data/tasks.json"

	
async			def			data_to_json	(data	:		List):
					"""
					TODO
				1.	Take	input	data,	of	a	list	of	tasks
				2.	Write	the	data	into	a	json	file	(tasks.json)
				"""
					pass
	
async			def			get_tasks	(id	:		Optional	[int]		=			0):
					"""
					TODO
				1.	Fetch	all	tasks	if	no	argument	(id)	provided
				2.	Else	fetch	the	task	by	id	provided
				"""
					return			"response"
	
async			def			create_task	(new_task	:		Task):
					"""
					TODO	:
				1.	Create	a	new	task	and	add	it	to	the	list	of	tasks
				2.	Write	the	updated	tasklist	to	file
				"""
					return			"id"
	
async			def			delete_task	(id):
					"""
					TODO	:
				1.	Delete	the	task	by	id	provided
				"""
					return			"id"
	
async			def			update_task	(id	:		int	,		new_task	:		Task):
					"""
					TODO
				1.	Update	the	task	by	id	based	on	new	task	details
				2.	write	the	updated	tasklist	to	file
				"""
					return			"id"

These	mirror	the	actions	that	will	be	performed	on	the	list	of	tasks.

data/tasks.json
This	file	contains	a	few	sample	tasks.	The	tasks	are	stored	as	a	JSON	list	similar
to	the	below
[
				{
									"id"	:		1	,
									"task"	:	{
													"summary"	:		"This	is	a	summary	of	task"	,
													"priority"	:		1
								}
				},
				{
									"id"	:		3	,
									"task"	:	{
													"summary"	:		"new	update"	,
													"priority"	:		2
								}
				}
]
	

14.4	Request	Body	and	Data	Validation
For	a	moment	let’s	go	back	to	Chapter	1	and	recall	that	the	response	that	we	got
when	we	sent	the	HTTP	request	to	CoinDesk	.	The	first	line	of	the	response
header	looked	something	like	this

HTTP/	1.1	200	OK

This	start-line	tells	us	the	HTTP	standards	being	used	to	encode	the	HTTP	request
packet	being	sent,	in	this	case	v1.1	is	being	used.	Additionally,	HTTP	messages
can	also	contain	header	(top	of	the	message	in	our	example)	and		body	(the
JSON	response	we	got).

Content	in	headers	and	body	technically	can	be	almost	anything,	but	there	are
standards	defined	elsewhere	that	limits	what	kind	of	headers	you	can	use.	In	our
filter	API	,	we	sent	a	“ 	mime-typ	e 	”,	we	could	have	called	is	“ 	wolverine-typ	e 	”	for	all
purposes	but	the	receiver	of	the	response,	typically	a	browser,	will	interpret	“
image/jpe	g 	”	as	an	image	of	JPEG	format	and	display	it	in	browser.	If	we	really
changed	the	“ 	mime-typ	e 	”	to	“ 	wolverine-typ	e 	”	the	browser	wouldn’t	know	what	to	do
with	that	and	ask	you	to	save	the	file	instead	of	displaying	it.

The	conclusion	is	there	are	only	so	many	keywords	that	are	used	in	headers	as	a
convention,	but	the	body	is	a	different	story	altogether.

The	body	of	a	HTTP	message	is	like	a	blank	slate.	But	again,	as	a	convention	the
world	follows	some	loose	guidelines	such	as,	as	we	explained	previously,	most
data	exchanges	between	front-end	and	back-end	are	typically	in	JSON	.

But	what	is	included	in	these	JSON	data?	Could	be	anything.

So,	coming	back	to	our	TODO	API	,	it	could	be	sent	a	JSON	string	that	contains
unnecessary	information	such	as	with	keys	that	are	misspelled.	E.g.	the	API	is
supposed	to	receive	the	summary	as	string	and	priority	as	integer,	but	what	if
someone	decided	to	send	the	priority	by	writing	the	literal,	e.g.	“one”	instead.
We	would	need	to	spend	CPU	cycles	to	figure	out	that	the	data	that	we	received	is
not	in	the	format	we	expected	it	to	be.

This	brings	the	need	for	data	validation.	What	if	we	could	force	the	user	to	send
us	a	JSON	that	must	contain	“	summary	”	that	is	string,	and	a	“	priority	”	that	is	an
integer	and	nothing	else?

That	is	exactly	purpose	of	Pydantic	.

14.4.1	Pydantic
Pydantic	is	a	must-know	Python	library	for	people	who	juggle	data	around	either
for	building	APIs	or	for	data	science.

Pydantic	solves	two	problems

1.					As	a	developer,	how	do	I	know	what	kind	of	data	is	supposed	to	be	sent	to	an	API	?
2.					How	do	I	prevent	typos	in	keys	or	use	the	correct	keys	in	a	JSON	or	dictionary	during	development?

Pydantic	is	a	parsing		and	validation	library	that	does	both	respectively.	How
does	it	do	that	is	explained	in	the	next	section.

14.5	Data	Model	for	TODO
The	intent	is	our	data	model	to	look	like	below

That	is,	we	are	defining	a	“	task	”	as	a	data	structure	that	contains	“	summary	”	and
“	priority	”.

We	declare	this	in	our	model	as

class			Task	(BaseModel):
					"""Definition	of	components	of	a	task"""
					summary	:		str
					priority	:		int

Then	we	create	a	list	of	tasks	that	contains	a	task	“ 	i	d 	”	and	the	task	details.	We
define	this	as

class			TaskList	(BaseModel):
					"""Definition	of	the	TaskList"""
					id	:		ID
					task	:		Task

Finally,	in	this	case	we	will	use	an	integer	as	the	ID,	so	we	declare	the	ID	as	a
special	type	using	the	“ 	typin	g 	”	library,	so	our	model	becomes

model/model.py
from			pydantic			import			BaseModel
from			typing			import			NewType	,		Optional
	
#	Declare	a	new	type	of	variable	ID
ID			=			NewType	("id"	,		int)
	

class			Task	(BaseModel):
					"""
				Definition	of	components	of	a	task
				"""
					summary	:		str
					priority	:		int
	
class			TaskList	(BaseModel):
					"""
				Definition	of	the	TaskList
				"""
					id	:		ID
					task	:		Task

14.6	Task	manager
Following	best	practices,	we	will	split	any	non-API	data	handling	and	response
work	to	a	sub-module,	in	this	case	our	task	manager	or	taskman	will	perform	the
actual	work	required.	The	taskman	will	look	like	below

model/taskman.py
from			model	.	model			import			Task	,		TaskList
import			json
from			pydantic			import			parse_file_as
from			typing			import			List	,		Optional
	
filepath			=			"data/tasks.json"
	
async			def			data_to_json	(data	:		List):
					"""	TODO
				1.	Take	input	data,	of	a	list	of	tasks
				2.	Write	the	data	into	a	json	file	(tasks.json)
				"""
					data			=			json	.	dumps	(data)
					with			open	(filepath	,		"w")		as			file	:
									file	.	write	(data)
	
async			def			get_tasks	(id	:		Optional	[int]		=			0):

					"""	TODO
				1.	Fetch	all	tasks	if	no	argument	(id)	provided
				2.	Else	fetch	the	task	by	id	provided
				"""
					tasks			=			parse_file_as	(List	[TaskList],		"data/tasks.json")
					data			=		{	task	.	id	:		task	.	dict	()		for			task			in			tasks	}
					response			=			data			if			id			==			0			else			data	[id]
					return			response
	
async			def			create_task	(new_task	:		Task):
					"""	TODO
				1.	Create	a	new	task	and	add	it	to	the	list	of	tasks
				2.	Write	the	updated	tasklist	to	file
				"""
					tasks			=			parse_file_as	(List	[TaskList],		"data/tasks.json")
					id			=			max	([task	.	id			for			task			in			tasks])		+			1
					tasks	.	append	(TaskList	(id	=	id	,		task	=	new_task))
					data			=		[task	.	dict	()		for			task			in			tasks]
					await			data_to_json	(data)
					return			id
	
async			def			delete_task	(id):
					"""	TODO
				1.	Delete	the	task	by	id	provided
				"""
					tasks			=			parse_file_as	(List	[TaskList],		"data/tasks.json")
					tasks			=		[task			for			task			in			tasks			if			task	.	id			!=			id]
					data			=		[task	.	dict	()		for			task			in			tasks]
					await			data_to_json	(data)
					return			id
	
async			def			update_task	(id	:		int	,		new_task	:		Task):
					"""	TODO
				1.	Update	the	task	by	id	based	on	new	task	details
				2.	write	the	updated	tasklist	to	file
				"""
					tasks			=			parse_file_as	(List	[TaskList],		"data/tasks.json")
					data			=		[task	.	dict	()		for			task			in			tasks]
					for			task			in			data	:

									if			task	["id"]		==			id	:
													task	["task"]		=			new_task	.	dict	()
	
					await			data_to_json	(data)
					return			id

Explanation

Our	taskman	contain	6	methods

First,	data_to_json() 	that	takes	a	list	of	Tasks,	converts	it	to	JSON	and	then	writes	it
to	a	file.

Second,	get_tasks() 	that	accepts	an	argument	i	d 	which	is	an	integer	that	identifies	the
task	number.	By	default,	it	is	set	to	be	0.	If	the	id	remains	0,	the	function	will
return	the	entire	list	of	tasks,	if	not,	it	will	send	only	the	task	id	that	is	specified.

To	do	that,	the	method	first	reads	the	tasks.jso	n 	file	that	contains	the	list	of	tasks,
and	parses	it	as	the	object	of	the	class	TaskLis	t 	that	we	have	defined,	converts	the
data	to	a	dictionary	and	then	selects	the	appropriate	response	based	on	the	value
of	id	variable	.

Third,	create_task() 	that	accepts	an	argument	of	type	“ 	Tas	k 	”.	Remember	Tas	k 	is	a	data
class	that	we	defined	in	our	model	that	specifies	the	data	structure	each	task
should	have.	Once	a	task	is	received	as	a	class	object,	the	method	first	reads	the
tasks.jso	n 	file	that	contains	the	list	of	tasks,	and	parses	it	as	the	object	of	the	class
TaskLis	t 	that	we	have	defined,	then	adds	the	new	task	to	the	list	of	tasks,	converts
the	data	to	a	dictionary	and	uses	data_to_json() 	method	to	write	it	back	to	the	file.

Fourth,	delete_task() 	,	as	the	name	suggest	delete	the	task	as	per	id	provided.	We
achieve	this	by	simply	first	parsing	the	json.tas	k 	file	as	TaskLis	t 	,	then	we	copy	all	the
tasks	except	the	one	whose	id	matches	the	one	we	received.	After	that	we	again
convert	this	list	of	tasks	into	a	dictionary	and	write	it	to	a	file

Fifth,	update_task() 	,	updates	the	task	as	specified	by	the	id,	with	the	new	task.

Now	our	taskman	should	be	able	to

1.	 Create	a	new	task
2.	 Return	a	particular	task
3.	 Return	all	tasks
4.	 Update	a	particular	task

5.	 And	delete	a	particular	task

14.7	Building	the	API
Let’s	look	at	the	headers	first,	apart	from	the	modules	from	FastAPI	library,	we
also	import	the	Task	specification	and	taskman	model

from			fastapi			import			FastAPI
	
from			fastapi	.	encoders			import			jsonable_encoder
from			model	.	model			import			Task
import			model	.	taskman			as			taskman

We	use	the	methods	we	just	defined	in	our	taskman	to	perform	CRUD	operations
on	a	low-fi	json	database.

14.7.1	Create	a	task
We	have	already	defined	the	logic	for	creating	new	tasks,	all	we	need	to	do	is

1.	 Force	the	user	to	send	a	JSON	that	is	in	the	format	of	“ 	Tas	k 	”.	We	will	test	this	later
2.	 Use	the	task	data	and	call	create_task() 	method	from	taskman	to	create	a	new	task

@	app	.	post	("/api/tasks/create")
async			def			create_task	(task	:		Task):
					"""	TODO
				1.	Create	a	new	task	and
				2.	Return	the	details	of	task
				"""
					id			=			await			taskman	.	create_task	(task)
					return			await			taskman	.	get_tasks	(id)

14.7.2	Viewing	a	task
To	view	a	particular	task,	we	define	it	as	a	path	variable.

@	app	.	get	("/api/tasks/	{id}	")
async			def			get_task	(id	:		int):
					"""	TODO
				Fetch	the	task	by	id
				"""

					return			await			taskman	.	get_tasks	(id)

So,	visiting	the	URL	“ 	/api/tasks/	3 	”	will	show	us	the	task	#3.

14.7.3	View	all	tasks
The	api/tasks	route	when	called	will	send	the	list	of	all	tasks	that	are	currently
available.	To	do	this,	all	we	need	to	do	now	is	call	the	get_tasks() 	method	from
taskman.

@	app	.	get	("/api/tasks")
async			def			get_tasks	():
					"""	TODO
				Fetch	the	list	of	all	tasks
				"""
					return			await			taskman	.	get_tasks	()

14.7.4	Update	a	task
Similar	to	the	creation	of	new	task,	we	ask	the	API	consumer	to	provide	us
updated	task	in	Task	schema	and	use	that	to	update	the	existing	task

@	app	.	put	("/api/tasks/	{id}	/update")
async			def			update_task	(id	:		int	,		task	:		Task):
					"""	TODO
				1.	Update	the	task	by	id
				2.	Return	the	updated	task
				"""
					await			taskman	.	update_task	(id	,		task)
					return			await			taskman	.	get_tasks	(id)

14.7.5	Delete	a	task
We	ask	the	API	consumer	for	the	task	id	that	needs	to	be	deleted	and	use	the
taskman	to	delete	the	task.

@	app	.	delete	("/api/tasks/	{id}	/delete")
async			def			delete_task	(id	:		int):
					"""	TODO
				1.	Delete	the	task	by	id

				2.	Return	a	confirmation	of	deletion
				"""
					id			=			await			taskman	.	delete_task	(id)
					response			=		{	id	:		"Task	successfully	deleted"	}
					return			jsonable_encoder	(response)

14.8	Final	API	design
So,	the	final	program	will	look	like	the	below

main.py
from			fastapi			import			FastAPI
	
from			fastapi	.	encoders			import			jsonable_encoder
from			model	.	model			import			Task
import			model	.	taskman			as			taskman
	
app			=			FastAPI	()
	
@	app	.	get	("/api/tasks")
async			def			get_tasks	():
					"""	TODO
				Fetch	the	list	of	all	tasks
				"""
					return			await			taskman	.	get_tasks	()
	
@	app	.	get	("/api/tasks/	{id}	")
async			def			get_task	(id	:		int):
					"""	TODO
				Fetch	the	task	by	id
				"""
					return			await			taskman	.	get_tasks	(id)
	
@	app	.	post	("/api/tasks/create")
async			def			create_task	(task	:		Task):
					"""	TODO
				1.	Create	a	new	task	and
				2.	Return	the	details	of	task
				"""

					id			=			await			taskman	.	create_task	(task)
					return			await			taskman	.	get_tasks	(id)
	
@	app	.	put	("/api/tasks/	{id}	/update")
async			def			update_task	(id	:		int	,		task	:		Task):
					"""	TODO
				1.	Update	the	task	by	id
				2.	Return	the	updated	task
				"""
					await			taskman	.	update_task	(id	,		task)
					return			await			taskman	.	get_tasks	(id)
	
@	app	.	delete	("/api/tasks/	{id}	/delete")
async			def			delete_task	(id	:		int):
					"""	TODO
				1.	Delete	the	task	by	id
				2.	Return	a	confirmation	of	deletion
				"""
					id			=			await			taskman	.	delete_task	(id)
					response			=		{	id	:		"Task	successfully	deleted"	}
					return			jsonable_encoder	(response)

14.9	Testing	the	API
By	now	you	know	how	to	test	the	API	,	but	what	I	want	to	show	you	is	the	power
of	FastAPI	and	Pydantic	using	Python	type-hinting.

Let’s	fire	up	the	Swagger	UI	by	running	the	app	and	then	opening	the	URL

http://127.0.0.1:8000/docs

This	will	bring	you	to	the	API	documentation	where	you	can	see	all	the	5	paths
that	we	have	defined	as	well	as	the	HTTP	method	they	are	using.

Let’s	try	to	create	a	new	task	by	clicking	on	the	Create	Tas	k 	section,	then	click	on	“
Try	it	ou	t 	”.	This	will	bring	up	a	message	box	that	says,	“ 	Request	bod	y 	”.	So,	our	API
documentation	tells	us	that	this	path	is	expecting	a	request	body	with	a	very
particular	format,	i.e.

{
			"summary"	:		"string"	,
			"priority"	:		0
}

In	this	JSON	formatted	response	body	you	are	allowed	to	change	the	values	as
long	as	they	are	the	data	type	suggested,	it	this	case	string	for	summary,	integer
for	priority.	If	you	were	to	either	change	the	keys	or	the	data	type	of	values,	e.g.
change	“ 	summar	y 	”	to	“ 	summarie	s 	”,	the	server	will	reject	your	request	without
invoking	the	program.

This	Error	42	2 	is	generated	by	the	server	because	our	server	recognised	that	the	API
was	expecting	a	particular	format	of	data	and	since	it	did	not	match	it,	it	simply
returned	a	422	Erro	r 	stating	that	an	Unprocessable	Entit	y 	was	supplied.

Our	program	did	not	throw	any	error	because	our	program	never	executed	this
API	request.

Why	is	this	impressive?	Because	it	reduces	the	development	time	significantly
as	I	do	not	need	to	catch	every	possible	error	that	could	be	encountered	by
incorrect	data	since	the	data	being	received	is	being	validated	before	execution
saving	CPU	cycles	as	well.

But	that	in	no	way	is	not	an	invitation	to	write	code	without	error	handling!

14.10	Where	to	from	here?
What	we	learnt	so	far	has	been	introduction	to	how	APIs	are	created,	but	this
should	provide	the	foundational	knowledge	for	you	to	learn	more	advanced
concepts	that	goes	into	developing	APIs	.	But	the	good	thing	is	you	can	use	these
foundations	and	layer	over	additional	blocks	to	make	you	API	production	ready.

E.g.	you	can	easily	configure	user	management	and	authentication	on	top	of	API
or	add	error	handling	to	ensure	the	app	doesn’t	break.

	

Au	Revoir
Did	this	book	help	you	in	some	way?	If	so,	I’d	love	to	hear	about	it.	Honest
reviews	help	readers	find	the	right	book	for	their	needs.

Is	there	any	other	topics	you’d	like	me	to	cover?	If	you	didn’t	get	what	you	came
looking	for,	tweet	to	me	at	@rehanhaider	.	I	will	as	always	be	happy	to	provide
guidance	and	constructive	feedback	will	make	this	book	better	for	future	readers.

About	the	Author
Rehan	Haider	loves	breaking	things	apart	and	reassembling	them	back	(mostly)
successfully.	He	wrote	his	first	program	in	Visual	Basic	as	a	pre-teen	when
Wikipedia	didn’t	exist,	only	reference	available	was	the	F1	documentation	and
his	own	reverse	engineering	acumen.
	
Rehan	has	a	4-year	Bachelor’s	Degree	in	Computer	Science,	a	Bachelor’s
Degree	in	Mathematics	(Hons.),	and	an	MBA	in	IT	&	Systems	Management.
	
At	present,	Rehan	is	an	Enterprise	Solution	Architect	working	for	a	global
consultancy	MNC	and	has	already	designed	solutions	for	over	250	clients
ranging,	most	of	them	belonging	to	Fortune	500,	consulting	on	Cloud,	DevOps,
and	Enterprise	applications,	and	IT	Systems.
.
He	is	a	former	teacher	who	taught	high	school	and	college	mathematics
specialising	Multivariate	Calculus,	Operations	Research	and	Optimisation
Theory,	along	with	C	&	Python	programming.
	
You	can	Tweet	memes	at	him	at	https://twitter.com/rehanhaider

https://twitter.com/rehanhaider

Acknowledgements
Icons	used	in	this	were	made	by	Pixel	perfect	from	www.flaticon.com
	

http://www.flaticon.com

	Table of Contents
	Prerequisites
	1. Internet
	2. Accounts
	3. Operating System
	4. Python
	5. Terminal
	6. Text Editor / IDE
	7. Git for Version Control
	8. Docker for Desktop (Optional)
	9. Jupyter Notebook

	Chapter 1: Introduction to Web APIs
	1.1 What is API?
	1.2 Types of APIs
	1.3 What is a Web API?
	1.4 Getting our hands dirty
	1.5 Getting hands dirty programmatically
	1.6 JavaScript Object Notation (JSON)
	1.7 Why are APIs needed?
	1.8 API Design Patterns

	Chapter 2: Python & Working with APIs
	2.1 Programmatically accessing an API

	Chapter 3: Building APIs with Flask
	3.1 Initialise the development environment
	3.2 Understanding the Starter Kit
	3.3 Initialising the starter kit
	3.3 A minimal Flask API
	3.3 Explanation
	3.5 Running the API
	3.6 Call the API Programmatically
	3.7 JSONIFY the response

	Chapter 4: Building interactive APIs
	4.1 Capturing request arguments
	4.2 Explanation
	4.3 Testing the API
	4.4 Catching sneaky behaviour and errors
	4.4 Handling incorrect API requests

	Chapter 5: Multi-argument interactive API
	5.1 Capturing multiple arguments
	5.2 Explanation
	5.3 Testing the API
	5.4 Reader Challenge

	Chapter 6. Google search as an API
	6.1 An informal introduction to URL and Querystring
	6.2 What can we do with this information?
	6.3 Understanding the Starter Kit
	6.4 Logic of the application
	6.5 Rendering home page
	6.6 Returning Search Results
	6.7 Explanation
	6.8 Student Challenge

	Chapter 7: Building a Dictionary API
	7.1 Understanding the Starter Kit
	7.2 Logic of the application
	7.3 Handle incoming searches
	7.4 Finding the definition of the word
	7.5 Handling list of words
	7.6 Testing the API
	7.7 Student Challenge
	7.8 Jupyter Notebook to test the API

	Chapter 8: Building a POST API
	8.1 API to add Filters
	8.2 Understanding the Starter Kit
	8.3 Logic of the application
	8.4 Implementing the Filter
	8.5 Testing the API
	8.6 Getting filtered image
	8.7 Bonus Challenge #2

	Chapter 9: Bonus Lesson: Deploying the API
	9.1 Configuring the CD Pipeline
	9.2 Testing the API
	9.3 Pro Tip: Testing using Terminal
	9.4 Bonus Challenge

	Chapter 10: Introducing FastAPI
	10.1 Asynchronous Programming
	10.2 Enter FastAPI
	10.3 Understanding the Starter Kit
	10.4 Saying Hello FastAPI

	Chapter 11: Dictionary using FastAPI
	11.1 Understanding the Starter Kit
	11.2 Implementing the usage instructions
	11.3 Implementing the dictionary
	11.4 Testing the API
	11.5 : FastAPI OpenAPI Docs and Swagger UI
	11.6 Handling a list of words
	11.7 Testing The API

	Chapter 12: Image filters using FastAPI
	12.1 Bonus: Deployment to Heroku

	Chapter 13: FastAPI async / await
	13.1 Making the program asynchronous
	13.2 Making the filter API asynchronous
	13.3 Test Scenario 1
	13.4 Test Scenario 2
	13.5 Test scenario 3
	13.6 Test Scenario 4
	13.7 Conclusion
	13.8 Bonus Challenge

	Chapter 14: Making a TODO API
	14.1 API Specifications
	14.2 Initialise the environment
	14.3 Understanding the starter kit
	14.4 Request Body and Data Validation
	14.5 Data Model for TODO
	14.6 Task manager
	14.7 Building the API
	14.8 Final API design
	14.9 Testing the API
	14.10 Where to from here?

	Au Revoir
	About the Author
	Acknowledgements

